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Abstract—We argue for a policy-based approach to increase 
spectrum availability. To this extend, we briefly summarize a new 
language for expressing policies that allow opportunistic 
spectrum access. A Policy Reasoner that reasons about these 
policies can be used with cognitive radios to guarantee policy-
specified behaviors while allowing spectrum sharing. We present 
our policy reasoner design and we evaluated the reasoner in a 
demonstration. We describe the policies used in that 
demonstration and the results of the evaluation. 

I. INTRODUCTION 
Today, wireless communication is confronting two 

significant problems: spectrum scarcity and deployment delays. 
These problems derive from current procedures for the 
assignment of frequencies, which are centralized and static in 
nature [1]. The current scheme cannot adapt to the rapidly 
changing spectrum needs of users from the government, 
military, and commercial worlds. New technologies often 
cannot be used effectively because of this inflexibility, but they 
also provide the basis for solutions.  

Spectrum is no longer sufficiently available, because it has 
been assigned to primary users that own the privileges to their 
assigned spectrum. However, studies [2] have shown that most 
of the spectrum is, in practice, unused most of the time. This 
observation was the starting point for DARPA’s NeXt 
Generation (XG) Communications program, which proposes 
opportunistic spectrum use to increase spectrum availability. 
To achieve opportunistic spectrum use, radios must have the 
following capabilities  

• Sensing over a wide frequency band and identifying 
primaries 

• Characterizing available opportunities 

• Communicating among devices to coordinate the use 
of identified opportunities Expressing and applying 
interference-limiting policies (among others) 

• Enforcing behaviors consistent with applicable policies 
while using identified opportunities 

Due to the large number of operating dimensions to be 
considered (frequencies, waveforms, power levels, and so 
forth) and the ever-changing nature of regulatory environments 
and application requirements, it is not feasible to design and 
implement optimal algorithms that allow radios to flexibly 
make use of available spectrum over time. Instead, a flexible 
mechanism has to be provided that supports spectrum sharing 

while ensuring that radios will adhere to regulatory policies. 
The solution must be able to adapt to changes in policies, 
applications, and radio technology. The XG Program has 
embraced a solution based on policies. The next section gives 
more detailed arguments for the policy-based approach.  

We have implemented a device-independent Policy 
Reasoner (PR) that provides a software solution to 
opportunistic spectrum access. Our approach allows encoding 
of spectrum-sharing policies, ensures radio behavior that is 
compliant with policies, and allows policies to be dynamically 
changed. The PR either approves or disallows every 
transmission candidate proposed by a radio, based on 
compliance with currently active policies. Flexibility and 
spectrum sharing are achieved by expressing policies in a 
declarative language based on formal logic, and allowing 
devices to load and change policies at runtime.  

Section II describes the advantages of using a policy-based 
solution. Our PR reasons with policies defined in our Cognitive 
(Policy) Radio Language (CoRaL), which was designed to 
support the definition of spectrum-access policies and to be 
extensible so that unanticipated policy types can be encoded. 
CoRaL has expressive constructs for numerical constraints and 
supports efficient reasoning. Section III gives a brief 
introduction to CoRaL that is sufficient for understanding the 
PR. In Section IV, we present various spectrum policies that 
illustrate key language features. Section V introduces the PR 
architecture and Section VI describes the design insights and 
implementation of the PR. We evaluated the PR in a 
demonstration, described in Section VII that uses the policies 
described in Section IV. We conclude with an overview of 
related work and plans for future extensions. 

II. BENEFITS OF POLICY¬BASED SPECTRUM SHARING 
In current radios, policies are programmed or hard-wired 

into the radio and form an inseparable part of the radio’s 
firmware. Typically, radio-engineers use imperative 
(procedural) languages such as C for radio software. One could 
envision implementing spectrum-sharing algorithms and 
behaviors on radios in a similar manner.  

However, this approach has obvious drawbacks. Any 
change in policies requires reimplementation (and 
reaccredidation) in the firmware of every radio that might 
operate in bands affected by the changes. Clearly, this approach 
does not scale well as technological advances lead to an 
increasing number of radio designs. Further, it is not scaleable 
or flexible enough to deal with policies that are written by the 
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many authorities in over 200 countries or that may initially 
change frequently as best practice is discovered or additional 
opportunities exploited.  

The key difference in our approach is that declarative 
policies are expressed in terms of “what” should be protected 
or made available rather then “how” spectrum is protected or 
made available. Several considerations argue for this policy-
based approach over encoding spectrum-sharing algorithms 
directly in radios:  

• Radio behavior can quickly adapt to a changing 
situation. While policies themselves can be written to 
behave differently in different situations, the main 
advantage is that policies can be dynamically loaded 
without the need of recompiling any software on the 
radio. For example, a policy might be loaded to more 
aggressively exploit spectrum-sharing opportunities in 
emergencies.  

• Policy changes can be limited to certain regions, 
frequencies, time-of-day or any other relevant 
parameter. Since policies are platform-independent, 
they can be loaded on different types of radios. Thus, 
new policies must only be uploaded into a radio to take 
effect, because each radio runs the policy reasoner on 
the currently loaded policies.  

• Our approach decouples policy definition, loading, and 
enforcement from device-specific implementations and 
optimizations. One advantage is a reduced certification 
effort. When policies, policy reasoners, and devices 
can be accredited separately, accreditation becomes a 
simpler task for each component. Changes to a 
component can be certified without accrediting the 
entire system. We can certify the PR and each policy 
once, independent of the radio, and then test device 
configurations to see whether they correctly interpret 
PR outputs. (In effect, the cost of accrediting the 
policies and policy reasoner is shared across all radio 
platforms.) Radios can dynamically load accredited 
policies without additional certification.  

• Another advantage of decoupling policies from radio 
implementation is that devices and policies can evolve 
independently over time. If a radio does not 
“understand” a policy, and can thus not fulfill its 
requirements, it will not have transmissions approved 
by this policy, thus missing opportunities but avoiding 
potentially creating interference. On the other hand, if a 
radio has more capabilities than required by a certain 
policy, it can just use what is required. Thus, new 
policies do not require changes in radio software or 
hardware, and existing policies will work on new radio 
hardware. Today a cyclic dependency exists where 
regulatory bodies must wait for technology and 
technology must wait to see what the policies look like.  

• A policy-based approach is extensible with respect to 
the kinds of policies that can be expressed. While we 
already know many relevant parameters and the 
interrelationships between various categories of 
policies, including structural relations such as 

hierarchies, we cannot foresee the degrees of freedom 
in policy definition that may be desirable in the future. 
Our approach provides the means to define new policy 
parameters.  

Example parameters include functional allocations of 
spectrum (e.g., emergency response or aeronautical 
radio navigation), geographic restrictions (e.g., US vs. 
foreign policies), temporal restrictions (e.g., time-of-
day), host nations or authorities (e.g., US vs. Europe, 
commercial vs. governmental), service restrictions 
(e.g., civil services, electronic warfare, Joint forces), 
and international vs. national policies on the same 
bands (e.g., maritime distress).  

• An unprecedented amount of freedom and control of 
spectrum is possible as stakeholders can shape 
spectrum policies (as allowed by regulations) to best fit 
their objectives. 

III. CORAL POLICY LANGUAGE 
The basis for policy-defined radios is a policy language that 

serves as an interface between at least two different viewpoints, 
namely that of the regulators and that of the radio engineers. 
For the sake of this discussion, we will assume each radio has a 
system strategy reasoner, which determines its strategy for 
making transmission requests by exploiting spectral 
opportunities. (Today’s radios could be considered to have 
simple, hardwired strategies that do not exploit other 
opportunities.)  

The main interest of regulators is the specification of 
admissible transmission behavior. They are usually not 
interested in how policy conformance is checked, as long as the 
check is correctly implemented. This is referred to as the 
soundness of the check. Regulators are not interested in the 
strategy used to discover opportunities, assuming that policy-
conformance is ultimately enforced. Furthermore, they are not 
interested in verifying if a radio’s strategy reasoner can exploit 
all transmission opportunities. Various trade offs (e.g., cost of 
sensing vs. need for spectrum), radio capabilities (e.g., ability 
to sense the spectrum), and the quality (degree of 
completeness) of the strategy reasoner itself will all affect 
which opportunities are exploited.  

The main interest of radio engineers, on the other hand, is 
to exploit as many policy-conforming transmission 
opportunities as possible. This naturally leads to an incentive to 
enhance capabilities of both the strategy reasoner and the 
policy conformance reasoner.  

To best support both of these viewpoints, a policy language 
with a simple and unambiguous semantics is needed. Since the 
foremost objective is to specify — as opposed to implement — 
policy-conforming behavior, a declarative language is a 
considerably better fit than an imperative language like C. In 
the XG project we have designed the Cognitive (Policy) Radio 
Language (CoRaL) [3], a domain-specific, logic-based 
specification language, which we briefly summarize.  



A. CoRaL Concepts  
CoRaL is a typed fragment of first-order logic with 

equality, enriched by built-in and user-defined concepts [3]. 
Examples of domain concepts that are shared among most 
policies are: frequency, power, location, powermask, and 
signal.  

A policy is composed of several rules. To support 
permissive as well as restrictive requirements, rules use either 
the allow or the disallow predicate, respectively. Policy 
rules are logical axioms that express under which conditions 
these predicates hold. These axioms can involve any declared 
parameters, which represent capabilities of the radio and the 
results of sensing actions (among other things).  

Conditions can also use predicates, which express modes of 
operation, locations, and so forth. Thus, conditions allow for 
dynamic adjustment of policies to the current situation. For 
example, a rule could allow military radios to use the GSM 
band when a conflict starts, but not earlier. Clearly, such 
context-sensitive policies can respond to the situation in 
various ways, invoking either restrictive or permissive rules.  

Numerical constraints are often used in policies spec-
ifications and can be directly expressed using built-in 
predicates in CoRaL. For example, a policy might require that 
for frequencies between 5000 and 5500 MHz, the transmission 
power should be at most 2dBm. A special syntax is available to 
specify powermasks, where the power is not constant but varies 
with frequency.  

Restrictive (disallow) rules take precedence over per-
missive (allow) rules. A policy can also be extended by rules in 

another policy without causing logical inconsistencies. For 
example, one policy may have a rule allowing the use of 
frequencies 5000 to 5500 MHz, whereas another policy might 
disallow the use of frequency 5250 MHz, as well as allow 
frequencies between 5200 and 6000 MHz. Thus, the 
combination of policies will allow the use of frequencies 
between 5000 and 6000 MHz, with the exception of frequency 
5250 MHz.  

Policies and ontologies can refer to concepts defined in 
other ontologies with a use statement. This capability supports 
modular specification and reuse of policies and ontologies.  

In addition to built-in types, variables, functions and 
predicates, CoRaL allows user-defined concepts. Formally, 
these concepts are expressed as equational or non-equational 
axioms in our logic. Concepts which are common across 
several policies can be factored out into ontologies, which can 
represent hierarchies of types and related functions or 
predicates. Formally, the only difference between ontologies 
and policies is that ontologies only define concepts and have no 
rules, whereas policies must have at least one rule and may also 
define concepts. Example ontologies that are useful for 
spectrum policies are discussed in the next section.  

B. Ontologies  
In our work on XG, we defined the ontologies summarized 

in Figure 1. We have ontologies for basic types (such as 
bandwidth, frequency, and power), radio capabilities, evidence, 
signals, time, powermasks, transmissions, and request 
parameters (among others). These ontologies give an extensible 
base for the parameters over which policies can be formulated, 

 
Figure 1.  Example Ontologies. Each box represents an ontology. The name on the top of the box is the name of the ontology. An arrow 
between two ontologies indicates that the ontology at the tail of the arrow uses the ontology at the head. For brevity, we only list types 
(in arial font) and variables (in italic font) in some of the ontologies. Functions, predicates, and axioms are not shown. Type hierarchies 
are represented using indentation.  



but should not be regarded as the only possibility. CoRaL 
expresses ontologies and domain concepts using type and 
subtype declarations. New requirements can be captured in 
user-defined ontologies, which may also build on these basic 
types.  

Our request-parameter ontology defines three variables that 
are typically contained in a transmission request. The variables 
are req radio : Radio, which describes characteristics of the 
requesting radio; req transmission : Transmission, which 
details parameters of the requested transmission, such as 
frequency and power; and req evidence : Evidence, which 
contains one or more evidence objects, each of which generally 
pertains to location, signal, or time of sensed data that was 
collected by the radio.  

These parameters refer to concepts such as Transmission, 
Radio, and Evidence. These concepts are modeled in CoRaL as 
types distributed over various ontologies, and build on the basic 
types shown in 1. Typically, a concept defines several 
operations.  

As an example, we show more detail about the ontology for 
transmission. One operation on the Transmission type is a 
function that determines the center frequency of the requested 
transmission:  

centerFrequency: Transmission → Frequency  

Other operations, such as mean EIRP (Effective Isotropic 
Radiated Power), are defined in a similar fashion. The 
formalization of the transmission ontology in CoRaL is given 
below.  
ontology transmission is 

use time,basic_types; 
 
public type Transmission; 
 
public const centerFrequency :  

Transmission -> Frequency; 
public const bandwidth : 

Transmission -> Bandwidth; 
public const maxOnTime :  

Transmission -> TimeDuration;  
public const minOffTime :  

Transmission -> TimeDuration;  
public const meanEIRP :  

Transmission -> Power;  
public const transmittedBy :  

Transmission -> Transmitter;  
end  

 
Powermasks are another typical concept in spectrum 

policies. As an example, the powermask for DFS (Dynamic 
Frequency Selection) [4] is depicted in Figure 2 and formally 
defined below using CoRaL syntax.  

We provide an intuitive syntax for defining powermasks, 
most of which are either linear or step functions. CoRaL 
represents a powermask as a list of tuples of numbers (x,y), 
where x refers to the frequency values on the x-axis (in MHz) 
and y refers to the power values on the y-axis (in dBc). CoRaL 
connects the points either as a linear or step function, as 
indicated by a keyword preceding the list of tuples. For 
example, the DFS powermask in Figure 2 is represented in 

CoRaL as follows. (The five circles in the figure correspond to 
the first five tuples.)  
defconst maxInBandLeakage : Powermask = 

symmetric linear 
[(0, 0), (9, 0), (11, 20), 
(20, 28), (30, 40), (180, 40), 
(180, 42), (216, 42), 
(216, 47), (inf, 47)] 

IV. SPECTRUM POLICY EXAMPLES 
For the experiments described in Section VII, we wrote 

listen-before-talk policies [5] over a broad range of 
frequencies. The policies were chosen to illustrate some of the 
main features of CoRaL (but they do not exhibit all language 
features), and to be realistic and thus potentially relevant for 
spectrum-sharing radio operations in the field.  

Listen-before-talk policies require a radio to actively sense 
its environment and submit data to the reasoner about what 
other signals were detected at what power levels. To add 
realism, we also included operational phases and geographical 
information as parameters.  

We defined example operational phases, such as “Day-to-
Day”, “Natural Disaster”, and “Training and Testing”, each 
with policies that address the specific communication needs of 
that phase. To mimic two countries with different regulations, 
we defined two adjacent regions that would be traversed by the 
radios. The radio must submit information about location and 
phase to the PR to get transmission requests approved by 
policies that require those parameters. The PR will apply the 
policies appropriate to the location and phase of a request.  

Figure 3 depicts three (of many possible) categories of 
policies used in our experiments. While our work has not 
formalized any such higher-level classifications, these could 
provide utility and aid understanding. For example, the 
categories in Figure 3 could correspond to increasingly higher-
level regulatory agencies.  

The policies in the inner circles generally require 
increasingly more information in transmission requests. Thus, a 
policy belonging to the innermost circle often requires 
information about operational phases, location, frequencies, 
and sensed state of the spectrum. The policies in the middle 
circle only check for operational phases, frequencies and state 
of the spectrum, while policies in the outermost circle might 
only constrain the frequencies to be used.  

Figure 2.  Example DFS Powermask. This figure (from [4]) has been 
annotated to highlight points in the graph corresponding to tuples in the 
CoRaL representation of the powermask. 



Some of the policies are permissive and allow use of 
spectrum under given conditions. Other policies are restrictive 
and forbid or restrict the use of bands. Figure 4 summarizes 
some of the policies used in our experiments. The restrictive 
policies in row 2 forbid access to the Satellite, Aeronautical 
Radionavigation, and Maritime Distress bands, as indicated by 
the Protected keyword. (We show details of such a policy 
below).  

 
Figure 4.  Overview of encoded policies. 

For other bands, permissive policies define the strength of 
signals that can be sensed by the radios and still allow 
transmission. The thresholds depend on the operational phase. 
For example, for the broadcast bands, a policy states that if the 
radio is operating in the “special event” phase and only senses 
signals that measure 90 dBm or less, then transmission is 
allowed (we show details of this policy below). If the radio was 
operating during a natural disaster, it would be okay to transmit 
even in the presence of signal up to 85 dBm. For some policies, 
different thresholds are given for the same frequency band in 
the two regions to illustrate how different regulatory bodies 
(different nations, service providers, and so on) might allow the 
use of spectrum under different circumstances.  

Some of the of frequency bands we used for the Fixed 
Mobile policies (all in MHz): 3074.8, 75.287.2, 225328.6, 335-
400, 420450, 12401390, 17551850, and so on. These frequency 
ranges reflect the current assignments of these bands for non-
federal government in the U.S. [6]. However, our goal was not 
to capture current practices and policies. Our focus was on 
evaluating CoRaL and its reasoner. To test the expressiveness 

and utility of our language, we have successfully implemented 
in CoRaL major parts of the Dynamic Frequency Selection 
(DFS) algorithms for the unlicensed 5 GHz band [4].  

Part of the CoRaL encoding of the restrictive policy for the 
aeronautical radionavigation band follows.  
policy aeronautical is 
use request_params; 
use mode; 

disallow if 
(mode(Day-to-Day) or mode(SpecialEvent) 

   and 
(centerFrequency(req_transmission) 

in {74.8 .. 75.2} or 
 centerFrequency(req_transmission) 

in {108.0 .. 117.975} or 
 ... 
 centerFrequency(req_transmission) 

in {2700.0 .. 2900.0}); 

end 

The policy imports the request_param ontology (and the 
ontologies imported by this ontology via transitivity of import), 
which defines concepts such as centerFrequency, 
req_transmission, and the modes. This policy has only one 
rule, which disallows the use of any of the specified frequency 
ranges in the specified modes.  

The following policy combines phase, sensed evidence 
about the spectrum state, and location. The first allow rule 
makes the specified frequency ranges available for 
transmission, for radios that are in Day-to-Day or 
TestingAndTraining mode and have sensed signals of less 
than 115 dBm. The second rule allows access to another set of 
frequencies during a SpecialEvent, but only if the radio is 
located in region r1. Whereas the location information restricts 
use, the threshold of the second rule is more permissive (95 
dBm instead of 115 dBm).  
policy fixedMobile is 

use request_params; 
use mode; 
use region; 

allow if 
(centerFrequency(req_transmission) 

in {225.0 .. 328.6} or 
... 
centerFrequency(req_transmission) 

in {2200.0 .. 2290.0}) 
   and 
   (mode(Day-to-Day) or mode(TrainingAndTesting)) 
   and 
   ((exists ?se:SignalEvidence) 

req_evidence(?se) and 
peakRxPower(?se) =< 115.0); 

allow if 
(centerFrequency(req_transmission) 

in {30.0 .. 74.8} or 
... 
centerFrequency(req_transmission) 

in {2900.0 .. 3000.0}) 
and 
(mode(SpecialEvent) 
or 
((exists ?le : LocationEvidence, ?l : Location) 

req_evidence(?le) and 

 
Figure 3.  Classification of encoded policies used in our experiments. 



location(?le) = ?l and 
locationInEllipse(?l,r1) = true)) 

and 
((exists ?se:SignalEvidence) 

req_evidence(?se) and 
peakRxPower(?se) =< 95.0); 

V. POLICYBASED RADIO ARCHITECTURE 
The XG architecture [7] (see Figure 5) consists of the radio 

hardware and firmware, which includes the RF frontend as well 
as sensors; the System Strategy Reasoner (SSR), which is 
typically specific to the radio hardware and can perform low-
level tuning and real-time optimizations; and the platform-
independent Policy Reasoner (PR), which determines whether 
transmission requests from the SSR conform to the currently 
loaded policies. The SSR must not transmit unless it has 
received message from the PR that the transmission is allowed.  

 
Figure 5.  XG Architecture. The small boxes are hardware components. The 
SSR is a radio component that exploits transmission opportunities. This is one 
of many possible architectures for using our policy language. 

There are several different types of messages:  

• RF-SSR. All incoming messages to the XG radio arrive 
at the RF unit, and end up in the SSR.  

These messages can be control messages, such as 
updates to system strategies, updates to policies, or 
messages controlling the coordination with other 
radios. Similarly, all messages going out from the XG 
radio originate in the SSR and are passed through the 
RF component. Outgoing messages can also be control 
messages (acknowledgment of policy updates, requests 
for new control channels, etc.) or data messages.  

• Sensors-SSR. The details of this interface will be 
determined by the radio designer. We assume that the 
sensors send their received data (or conclusions drawn 
from it) to the SSR. The analysis of sensor data, sensor 
data aggregation, signal detection, and other such 
processing could happen in the sensor component(s), in 
the SSR, or in a dedicated component (not shown). The 
SSR may send control messages to the sensor 
components. 

• SSR-PR. There are several types of messages in the 
interface between the SSR and the PR. Transmission 
requests: Before an XG radio can send a transmission, 
it needs approval from the PR. The SSR builds a 
transmission request, and sends it to the PR. The PR 
reasons about the request and the active policies, and 
responds by sending one of three replies to the SSR: 

(1) The transmission is allowed. (2) The transmission 
is not allowed. (3) The PR returns constraints that must 
be satisfied. Given acceptable values of the 
underspecified request parameters, the transmission 
will be allowed. Policy updates: The SSR can also 
send policy-update messages to the PR, in order to add 
or remove policies to and from the PRs policy base and 
to activate or deactivate policies. Policy information: 
The SSR can request information regarding which 
policies are loaded or active.  

VI. PROLOGBASED POLICY ENGINE  
SRI International (SRI) has been mainly concerned with the 

Policy Reasoner (PR) module of the XG architecture. We have 
implemented a prototype PR in Prolog1, which gives yes/no 
answers to transmission requests, covering a large subset of the 
CoRaL language. We are currently investigating options for 
implementing a PR with the ability to return constraints on 
failed requests.  

A. Policy Reasoner Components  
Figure 6 shows an overview of the main modules of the PR, 

and some of the relationships between them. This architecture 
is not part of the XG Architecture. The PR could have been 
implemented differently. The larger ovals show the 
implementation languages. Most of the modules are 
implemented in Java, but the reasoning is done in Prolog. The 
SSR can be implemented in any language.  

 
Figure 6.  Policy Reasoning Engine Modules  

From the perspective of the SSR, the PR can be viewed as a 
black box, with a certain input/output behavior defined by the 
SSRPR interface described in Section V.  

SSR. All messages to the PR originate from and are 
initiated by the SSR. The PR never initiates communication 
itself.  

Policy Console. A text-based interactive application that 
can be used to debug and test policies, perform requests, etc.  

                                                                            

1 The reasoner can be provided to interested parties upon request, subject to 
approval from our sponsor DARPA. 



Policy Manager. This module controls all operations of the 
PR. All of the methods in the SSRPR interface are 
implemented as static methods of the PolicyManager Java 
class. The Policy Manager delegates functionality to various 
other modules, as can be seen in Figure 6. This module keeps 
lists of all currently loaded/active policies.  

Policy Reasoner. This module is a thin Java wrapper 
around the module that does the actual reasoning. There is a 
Reasoner Java interface with only a few methods, and one 
implementation, PrologReasoner. This means that we could 
replace the reasoner backend without changing anything else in 
the implementation. The main functionality in the 
PrologReasoner class is  

• Translating policies, ontologies, and requests from 
abstract syntax to Prolog. 

• Loading and unloading these modules to/from Prolog. 

• Asking Prolog to perform the actual queries, and 
returning the results as a Java object (of the Result 
class).  

Parser. This module takes a CoRaL policy, ontology, or 
request as input and produces abstract syntax, in the form of 
Java objects, as output. The Java code for the parser is 
generated automatically at build time from a grammar 
specification, using the JavaCC parser generator.  

Typechecker. Type checking is done on the abstract 
syntax, i.e., on Java objects. After being type checked, the 
abstract syntax is supplemented with some type information, 
which is used in the translation to Prolog, among other things.  

Translator. This module translates policies, ontologies, 
and requests from abstract syntax to Prolog (see the following 
section).  

External Functions. Some of the functionality needed by 
CoRaL policies cannot (or should not, due to efficiency 
concerns) be implemented in CoRaL itself. These functions 
have been implemented in Java. So far, the external functions 
fall into the following categories:  

• Powermask operations  

• Time operations  

• Geometric operations  

Prolog Runtime. This module is the only part that is 
implemented in Prolog. It consists of  

• The translated policies, ontologies, and requests.  

• Code for equality and function evaluation, which is not 
normally supported in Prolog, and therefore has to be 
encoded (see the next section).  

• Code for the built-in predicates and functions (<, +, 
mod, etc). 

• Code for marshalling parameters between Prolog and 
the external functions in Java.  

B. CoRaLtoProlog Translation  
When implementing a language (the object language) using 

another language (the meta-language), there are two main 
approaches one can use:  

• The object language is translated to the meta-language. 

• The object language is encoded and evaluated in the 
meta-language.  

The first approach is generally more efficient, because there 
is no overhead involved in evaluation. The object language is 
essentially executed by executing the meta-language. However, 
one is limited to the operational behavior of the meta-language. 
With the second approach (encoding) one has more flexibility, 
since one can implement the desired operational behavior in the 
meta-language.  

Mixes of the two approaches are also possible. The PR 
described in this report uses such a hybrid approach. The 
following parts of the language are translated: CoRaL 
predicates are translated to Prolog predicates, CoRaL 
“standard” rules become Prolog rules, CoRaL policies, 
ontologies, and requests are translated into Prolog modules. 
There were some differences between how Prolog handles 
modules and CoRaL handles them, so this was not a 
completely straightforward translation. Finally, CoRaL abstract 
data types become Prolog unary predicates.  

However, Prolog’s native operational semantics does not 
support equality constraints, user-defined equations or function 
evaluation. The only way to achieve those features in Prolog is 
to use the encoding approach. The encoding is rather shallow:  

• Equality constraints are represented by a Prolog 
predicate eq/2, defined in the pre.pl file. There are 
Prolog rules for the transitivity and reflexivity of 
equality.  

• User-defined equations are represented by a rewrite/2 
predicate, and are always interpreted in a directional 
left to right. These equations are taken into account 
when equality constraints are evaluated. 

• Functions are represented as compound Prolog terms. 
They are evaluated, when the arguments are provided, 
by applying rewrite rules, in a call-by-value (eager) 
evaluation fashion.  

C. Example Translation: CoRaL to Prolog  
We present an example of the translation (or encoding) of a 

CoRaL policy to Prolog. We use a listen-before-talk example 
policy that uses time and location information. Such 
information is often used in policies relating to television 
broadcast.  

The policy allows XG radios to transmit in the band 450 
MHz to 600 MHz if they (1) transmit continuously for at most 
1 second with (2) a bandwidth of at most 6 MHz, (3) have off-
time of at least 150 milliseconds, (4) have duty cycle of at least 
50% across a 2second period, (5) if they sample spectrum at 
least once every 5 seconds for TV signals using power sensing 
but no subnoise detection of DTV signals, (6) they received 



spectral power in the channel they are transmitting equivalent 
to or less than 100 dBm, and (7) the peak power spectral 
density of their emission does not exceed 53 dBm/Hz. This 
policy is encoded in CoRaL as follows:  
policy tv1 is 

use ssc_params; 
defconst F : Frequency = 

centerFrequency(req_transmission); 
allow if 

F in {450.0 .. 600.0} and 
timeDurationLessThanOrEqual( 

maxOnTime(req_transmission), 
td(0,0,0,1,0)) = true and 

bandwidth(req_transmission) =< 6.0 and 
timeDurationLongerThanOrEqual( 

minOffTime(req_transmission), 
td(0,0,0,0,150)) = true and 

meanEIRP(req_transmission) =< 53.0 and 
(exists ?se:SignalEvidence) 
req_evidence(?se) and 
peakRxPower(?se) =< 100.0 and 
{F3.0 .. F+3.0} in 

scannedFrequencies(?se) and 
(exists ?d:PeriodicSignalDetector) 

detectedBy(?se) = ?d and 
sampleRate(?d) >= 0.2 and 
dutyCycle(?d) >= 0.5; 

end 

The encoding is  
Header  
:module(tv1,[]). 
:style_check(singleton). 
:style_check(discontiguous). 
:dynamic allow_l/1. 
user:allow(X) : 
context_module(M), 
debug:debug(runtime,debug,”˜n˜w:allow”,[M]), 

allow_l(X). 
rewrite_l(if(F,M1,M2),X) : 

call(F) > X=M1 ; X=M2. 

%Rules  
allow_l(tv1) : 
in(centerFrequency(req_transmission), 
range(450.0,600.0)), 

eq(timeDurationLessThanOrEqual( 
maxOnTime(req_transmission), 

td(0,0,0,1,0)),true), 
lte(bandwidth(req_transmission),6.0), 
eq(timeDurationLongerThanOrEqual( 

minOffTime(req_transmission), 
td(0,0,0,0,150)),true), 

lte(meanEIRP(req_transmission), 
uminus(53.0)), 

(‘SignalEvidence’(Se), 
req_evidence(Se), 
lte(peakRxPower(Se),100.0), 
in(range(sub(centerFrequency(req_transmission), 

3.0), 
add(centerFrequency(req_transmission), 

3.0)), 
scannedFrequencies(Se)), 

(‘PeriodicSignalDetector’(D), 
eq(detectedBy(Se),D), 
gte(sampleRate(D),0.2), 
gte(dutyCycle(D),0.5))). 

In these policies, we can observe the shallow encoding of 
function applications as compound Prolog terms, the 
representation of built-in predicates (e.g., eq for equality, lte for 

less than or equal), and so forth. We also see that the defined 
constant F has been substituted, because Prolog does not 
natively support definitions. So centerFrequency 

(req_transmission) occurs everywhere in place of the 
defined constant F (which has the same behavior). We can also 
see how some special syntactic forms of CoRaL have been 
translated, for example, {450.0 .. 600.0} became 
range(450.0,600.0).  

We could have accomplished this in another programming 
language. However, we make use of goal-directed reasoning, 
which is well supported by Prolog. We mentioned that abstract 
data types are translated to unary Prolog predicates. We can see 
two examples above: ‘SignalEvidence’ and 
‘PeriodicSignalDetector’ (these are in single quotes 
because Prolog would otherwise interpret them as variables). 
Let us look at the existential quantifiers in the policy above. 
We have (exists ?se:SignalEvidence)....  

In the Prolog translation, this becomes ‘SignalEvidence’ 
(Se).  

?se has become Se because variables have to start with an 
uppercase letter in Prolog. This translation has the correct 
behavior, because of Prolog’s unification and backtracking 
features. Prolog will see ‘SignalEvidence’(Se) as a goal that 
must be satisfied. This will happen if there is a rule that unifies 
with this goal. For example, if we have, in a request, a line 
sigev : SignalEvidence; this is translated to the Prolog 
version SignalEvidence(sigev)  

This will unify with SignalEvidence(Se), with the obvious 
substitution Se = sigev. Prolog can now continue to the next 
goal, keeping this substitution for whenever the Se variable 
next appears. If some further goal fails, Prolog will backtrack 
to the same goal again, and try another value for Se, if there is 
one. Therefore, the existentially quantified formula will 
succeed if and only if the Prolog version succeeds. Of course, 
this kind of execution can be very slow if there are many 
unifiers, and only a few of them succeed.  

D. Limitations of Prolog Encoding  
The Prolog encoding of policies works essentially by 

executing them. This is usually very efficient, but is also has 
serious drawbacks.  

Universal quantifiers. We cannot translate all kinds of 
universal quantification to native Prolog. Some kinds are not 
problematic. For example, the universal quantifiers on the 
outside of rules can be handled because they are already 
implicitly in Prolog rules. Also, some kinds of finite universal 
quantifiers are handled by trying all possibilities. For example, 
(forall x:Int in [1,2,3]) p(x) is translated to 
forall(X,(member(X,[1,2,3]), p(X))). Prologs forall 
operator does what we just said: It tries all possibilities, i.e. all 
unifiers. So, in this case, X will be unified first with 1, and the 
p(1) goal will be tried. If this succeeds, X is unified with 2, and 
p(2) will be tried, and then the same for p(3). Only if all three 
goals succeed does the whole forall statement succeeds. Our 
comments on the efficiency of using unification for existential 
quantification are true for universal quantification and result in 
even worse efficiency. In the existential case, we can at least 



quit when we find a unifier that makes the existential statement 
succeed. In the universal case, we always have to try all 
substitutions.  

Constraints. In the future, we plan to extend the PR to 
return those constraints that still have to be satisfied before an 
underspecified request can be approved. These constraints can 
guide the SSR towards transmission opportunities under the 
current policies.  

The PR must return constraints when a policy fails due to 
the request being underspecified. For example, given a request 
for certain frequencies, the PR might return a constraint on the 
maximum power. While Prolog does have the so-called clp/r 
constraint-solving capability for linear arithmetic, we have 
found this to be inadequate because of lack of support for 
negations and quantifiers.  

Given these limitations and the fact that only a fragment of 
CoRaL has been implemented currently, we nevertheless have 
been able to encode and execute all the policies that were 
desired for our XG experiments and demonstration.  

VII. REASONER CAPABILITY DEMONSTRATION  
XG technology was demonstrated for the first time to key 

stakeholders at Fort A.P. Hill in Virginia, in August 2006. The 
demonstration included the functionality of XG Radios 
developed by Shared Spectrum Company and the CoRaL 
language and the Policy Reasoner developed by SRI 
International. The test was carried out in the geographic region 
(known as the ‘Drop zone’) shown in the map on the upper left 
hand corner of Figure 7 (Marked as [A]).  

Pairs of XG radios formed communication links and 
traversed a path from the region shown as ‘Metropolitan Area’ 
to the ‘Disaster Area’ and back. Throughout the drop zone, 

legacy radio pairs were placed and formed a separate set of 
communication links. The legacy radios were used for the 
purpose of generating interference in the communication 
channels used by the XG radios and to test if such interference 
is detected by the XG radios and, if so, whether the channel 
would be abandoned and the XG radios would switch to a 
channel which would not cause interference.  

The tests conducted at the Fort A.P. Hill drop zone 
successfully demonstrated that the XG Radios were adapt at 
detecting interference and changing communication channels 
rapidly to avoid interference. In fact, the channel switch was so 
fast that the legacy radios were not affected, showing readiness 
for real-life scenarios.  

The XG radios in this demonstration did not use SRI’s PR, 
but instead used a simpler reasoner with a less powerful policy 
language, but one that had the same form/fit/function as SRI’s 
PR. The standalone demonstration of SRI’s PR demonstrated 
the wide array of policies that the CoRaL language can express, 
and the speed and scalability of the PR, which was fed 
thousands of transmissions requests in a few seconds. All the 
policies summarized in Figure 3 of Section IV were active.  

To test the scalability of the PR, we generated requests for 
transmission for the entire scan range of the Rockwell sensor 
used by the XG radio (from 20MHz to 2500MHz) in 1MHz 
increments. Therefore, for each pass of the sensor, the PR 
received approximately 2500 requests, which is many more 
than any realistic SSR would send. The PR processed about 
200 requests per second. This 5ms average time is more than 
adequate to support the rapid abandonment time required by 
XG to avoid interference.  

The graphical user interface of the PR demonstration 
consisted of two windows (Figure 7 for inputs and Figure 8 for 
outputs). The four parameters that make up a request are 

 
Figure 7.  Request Parameters GUI. 



location, operational phase, frequency and sensed signal 
strength, which are depicted by regions marked AD 
respectively in Figure 7. The drop zone marked [A] consists of 
two sub-regions “Metropolitan Area” and “Disaster Area”, 
which were used to depict the PRs ability to do geographic 
reasoning using latitude/longitude coordinates. The underlying 
policies change as the radio moves between regions or changes 
operational phases.  

Transmission requests are defined in CoRaL. A typical 
request in the PR demonstration had the following form:  

request xgreq is 
centerFrequency(req_transmission) = 1250.00; 

public const se : SignalEvidence; 
req_evidence(se); 
peakRxPower(se) = 79.0; 

mode(SpecialEvent); 

public const le : LocationEvidence; 
req_evidence(le); 
location(le) = (112.0, 215.0); 

end 

Figure 8 depicts the results returned by the PR for the set of 
requests submitted to it. The field marked [H] in this figure 
denotes the total spectrum currently available for military use 
in the 20MHz2500MHz range (see [6]).  

Using the policies summarized in Section IV, we 
demonstrated the use of CoRaL policies to dynamically change 
how aggressive the radio is in accessing spectrum, based on the 
location of the XG radio, its operational mode, and the sensed 
signal strengths.  

The demonstration was carried out by changing the 
operational phase in the following sequence: Day-to-Day, 
Special Event, Natural Disaster, Training and Testing. For each 
phase, we ran the 2500 requests twice with different sensed 
data. The results of these requests are illustrated on the bottom 
of Figure 8 using color coding for the reasoner answers. Each 
black/grey/white stripe corresponds to the answers for an 
operational phase, starting with the Day-to-Day phase on the 
bottom. On the top of Figure 8 are four fields that show the 
total available spectrum for each of these operational modes 

using an XG radio. As expected this amount increases 
noticeably from the first operational mode to the third 
monotonically and is consistent with the behavior specified in 
the CoRaL policies. The total available spectrum for the 
operational phase “Special Event” is an intermediate value and 
depicts the ability of the PR to be fine tuned to fit custom 
needs.  

Three colors, White, Black and Gray are used in Figure 8 to 
denote different responses from the XGPR for a request. We 
used the following color coding for answers from the PR (see 
Figure 9). Black denotes a frequency band which is explicitly 
protected by one of the active policies. White denotes a band 
for which transmission is allowed, either because it is assigned 
or because there is a sharing opportunity given current policies 
and request parameters. Gray denotes a band for which 
transmission was disallowed. Given the active policies in the 
demonstration, this generally indicates an unacceptable 
probability of causing interference.  

 
Figure 9.  Color Coding of Reasoner Replies in GUI. 

The region marked [E] depicts the main characteristic of the 
XG technology. In this case, none of the input parameters has 
changed except for the location of the XG radio and the 
strength of the sensed signals. A closer examination shows that 
in this situation certain requests that were denied are now 
approved, due to the change in location or sensed signals. Such 
opportunistic spectrum access is the key achievement of the 
XG technology and shows the policy-based radios adopting to 
dynamic situations rapidly (the change from Gray to White and 
vice versa).  

Regions marked [F], [G] shows that the PR can change its 
behavior to more aggressive access of spectrum by either 
removing protections from protected frequency bands [G] 
(black turns white or gray) or by increasing its thresholds for 
interference [F] (grey turns white). The latter will, of course, 
increase the probability of interference, but, at any given time, 
the PR ensures that the radio behaves according to the currently 
loaded policies, whatever those might be.  

Regions denoted in white in Figure 8 depict requests that 
were approved. These represent opportunistic spectrum access 
that conforms to active policies, which implies an acceptably 
low risk of interference.  

VIII. CONCLUSION  
Current radio technology allows us to aggressively access 

spectrum by ignoring sensed signals or preset thresholds, but 
the risk of interference is high. The policy-based XG 
technology provides a framework within which dynamic 
behaviors for radios can be specified by policies so that 
spectrum can be accessed opportunistically with an acceptably 
low risk of interference.  

 

Figure 8.  Reasoner Answers GUI. 



CoRaL has proven expressive enough to encode a wide 
variety of spectrum-sharing policies, including DFS and all the 
policies that were desired for our XG experiments and 
demonstration. In our experiments, the PR processed requests 
in less than 5ms on average, which is more than adequate to 
support the rapid abandonment time required by XG to avoid 
interference.  

Future Work. Due to the expected complexity of future 
policies, a policy language should allow for advanced forms of 
policy analysis, e.g. detection of logical inconsistencies. We are 
currently investigating the use of theorem proving technology 
to provide specialized analysis methods for spectrum policies 
written in CoRaL.  

The functionality of the PR will also be extended. Our 
current PR does only validate transmission requests and 
provides yes/no answers. However, smart radios could exploit 
the reason for which a transmission request failed, if that 
information were available. Our next generation PR will 
provide more detailed answers in the case of negative 
decisions. In particular, we will return the additional 
constraints, if any exist, that the radio must satisfy in order to 
be granted use of the spectrum.  

Finally, we will perform more experiments with larger 
policy sets or more complex policies to test the limitations of 
the reasoner.  
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