
A Policy Engine For Spectrum Sharing

Grit Denker, Daniel Elenius, Rukman Senanayake, Mark-Oliver Stehr, David Wilkins
SRI International

Menlo Park, CA 94025
{firstname.lastname}@sri.com

Abstract—We argue for a policy-based approach to increase
spectrum availability. To this extend, we briefly summarize a new
language for expressing policies that allow opportunistic
spectrum access. A Policy Reasoner that reasons about these
policies can be used with cognitive radios to guarantee policy-
specified behaviors while allowing spectrum sharing. We present
our policy reasoner design and we evaluated the reasoner in a
demonstration. We describe the policies used in that
demonstration and the results of the evaluation.

I. INTRODUCTION
Today, wireless communication is confronting two

significant problems: spectrum scarcity and deployment delays.
These problems derive from current procedures for the
assignment of frequencies, which are centralized and static in
nature [1]. The current scheme cannot adapt to the rapidly
changing spectrum needs of users from the government,
military, and commercial worlds. New technologies often
cannot be used effectively because of this inflexibility, but they
also provide the basis for solutions.

Spectrum is no longer sufficiently available, because it has
been assigned to primary users that own the privileges to their
assigned spectrum. However, studies [2] have shown that most
of the spectrum is, in practice, unused most of the time. This
observation was the starting point for DARPA’s NeXt
Generation (XG) Communications program, which proposes
opportunistic spectrum use to increase spectrum availability.
To achieve opportunistic spectrum use, radios must have the
following capabilities

• Sensing over a wide frequency band and identifying
primaries

• Characterizing available opportunities

• Communicating among devices to coordinate the use
of identified opportunities Expressing and applying
interference-limiting policies (among others)

• Enforcing behaviors consistent with applicable policies
while using identified opportunities

Due to the large number of operating dimensions to be
considered (frequencies, waveforms, power levels, and so
forth) and the ever-changing nature of regulatory environments
and application requirements, it is not feasible to design and
implement optimal algorithms that allow radios to flexibly
make use of available spectrum over time. Instead, a flexible
mechanism has to be provided that supports spectrum sharing

while ensuring that radios will adhere to regulatory policies.
The solution must be able to adapt to changes in policies,
applications, and radio technology. The XG Program has
embraced a solution based on policies. The next section gives
more detailed arguments for the policy-based approach.

We have implemented a device-independent Policy
Reasoner (PR) that provides a software solution to
opportunistic spectrum access. Our approach allows encoding
of spectrum-sharing policies, ensures radio behavior that is
compliant with policies, and allows policies to be dynamically
changed. The PR either approves or disallows every
transmission candidate proposed by a radio, based on
compliance with currently active policies. Flexibility and
spectrum sharing are achieved by expressing policies in a
declarative language based on formal logic, and allowing
devices to load and change policies at runtime.

Section II describes the advantages of using a policy-based
solution. Our PR reasons with policies defined in our Cognitive
(Policy) Radio Language (CoRaL), which was designed to
support the definition of spectrum-access policies and to be
extensible so that unanticipated policy types can be encoded.
CoRaL has expressive constructs for numerical constraints and
supports efficient reasoning. Section III gives a brief
introduction to CoRaL that is sufficient for understanding the
PR. In Section IV, we present various spectrum policies that
illustrate key language features. Section V introduces the PR
architecture and Section VI describes the design insights and
implementation of the PR. We evaluated the PR in a
demonstration, described in Section VII that uses the policies
described in Section IV. We conclude with an overview of
related work and plans for future extensions.

II. BENEFITS OF POLICY¬BASED SPECTRUM SHARING
In current radios, policies are programmed or hard-wired

into the radio and form an inseparable part of the radio’s
firmware. Typically, radio-engineers use imperative
(procedural) languages such as C for radio software. One could
envision implementing spectrum-sharing algorithms and
behaviors on radios in a similar manner.

However, this approach has obvious drawbacks. Any
change in policies requires reimplementation (and
reaccredidation) in the firmware of every radio that might
operate in bands affected by the changes. Clearly, this approach
does not scale well as technological advances lead to an
increasing number of radio designs. Further, it is not scaleable
or flexible enough to deal with policies that are written by the

1-4244-0663-3/07/$20.00 ©2007 IEEE

many authorities in over 200 countries or that may initially
change frequently as best practice is discovered or additional
opportunities exploited.

The key difference in our approach is that declarative
policies are expressed in terms of “what” should be protected
or made available rather then “how” spectrum is protected or
made available. Several considerations argue for this policy-
based approach over encoding spectrum-sharing algorithms
directly in radios:

• Radio behavior can quickly adapt to a changing
situation. While policies themselves can be written to
behave differently in different situations, the main
advantage is that policies can be dynamically loaded
without the need of recompiling any software on the
radio. For example, a policy might be loaded to more
aggressively exploit spectrum-sharing opportunities in
emergencies.

• Policy changes can be limited to certain regions,
frequencies, time-of-day or any other relevant
parameter. Since policies are platform-independent,
they can be loaded on different types of radios. Thus,
new policies must only be uploaded into a radio to take
effect, because each radio runs the policy reasoner on
the currently loaded policies.

• Our approach decouples policy definition, loading, and
enforcement from device-specific implementations and
optimizations. One advantage is a reduced certification
effort. When policies, policy reasoners, and devices
can be accredited separately, accreditation becomes a
simpler task for each component. Changes to a
component can be certified without accrediting the
entire system. We can certify the PR and each policy
once, independent of the radio, and then test device
configurations to see whether they correctly interpret
PR outputs. (In effect, the cost of accrediting the
policies and policy reasoner is shared across all radio
platforms.) Radios can dynamically load accredited
policies without additional certification.

• Another advantage of decoupling policies from radio
implementation is that devices and policies can evolve
independently over time. If a radio does not
“understand” a policy, and can thus not fulfill its
requirements, it will not have transmissions approved
by this policy, thus missing opportunities but avoiding
potentially creating interference. On the other hand, if a
radio has more capabilities than required by a certain
policy, it can just use what is required. Thus, new
policies do not require changes in radio software or
hardware, and existing policies will work on new radio
hardware. Today a cyclic dependency exists where
regulatory bodies must wait for technology and
technology must wait to see what the policies look like.

• A policy-based approach is extensible with respect to
the kinds of policies that can be expressed. While we
already know many relevant parameters and the
interrelationships between various categories of
policies, including structural relations such as

hierarchies, we cannot foresee the degrees of freedom
in policy definition that may be desirable in the future.
Our approach provides the means to define new policy
parameters.

Example parameters include functional allocations of
spectrum (e.g., emergency response or aeronautical
radio navigation), geographic restrictions (e.g., US vs.
foreign policies), temporal restrictions (e.g., time-of-
day), host nations or authorities (e.g., US vs. Europe,
commercial vs. governmental), service restrictions
(e.g., civil services, electronic warfare, Joint forces),
and international vs. national policies on the same
bands (e.g., maritime distress).

• An unprecedented amount of freedom and control of
spectrum is possible as stakeholders can shape
spectrum policies (as allowed by regulations) to best fit
their objectives.

III. CORAL POLICY LANGUAGE
The basis for policy-defined radios is a policy language that

serves as an interface between at least two different viewpoints,
namely that of the regulators and that of the radio engineers.
For the sake of this discussion, we will assume each radio has a
system strategy reasoner, which determines its strategy for
making transmission requests by exploiting spectral
opportunities. (Today’s radios could be considered to have
simple, hardwired strategies that do not exploit other
opportunities.)

The main interest of regulators is the specification of
admissible transmission behavior. They are usually not
interested in how policy conformance is checked, as long as the
check is correctly implemented. This is referred to as the
soundness of the check. Regulators are not interested in the
strategy used to discover opportunities, assuming that policy-
conformance is ultimately enforced. Furthermore, they are not
interested in verifying if a radio’s strategy reasoner can exploit
all transmission opportunities. Various trade offs (e.g., cost of
sensing vs. need for spectrum), radio capabilities (e.g., ability
to sense the spectrum), and the quality (degree of
completeness) of the strategy reasoner itself will all affect
which opportunities are exploited.

The main interest of radio engineers, on the other hand, is
to exploit as many policy-conforming transmission
opportunities as possible. This naturally leads to an incentive to
enhance capabilities of both the strategy reasoner and the
policy conformance reasoner.

To best support both of these viewpoints, a policy language
with a simple and unambiguous semantics is needed. Since the
foremost objective is to specify — as opposed to implement —
policy-conforming behavior, a declarative language is a
considerably better fit than an imperative language like C. In
the XG project we have designed the Cognitive (Policy) Radio
Language (CoRaL) [3], a domain-specific, logic-based
specification language, which we briefly summarize.

A. CoRaL Concepts
CoRaL is a typed fragment of first-order logic with

equality, enriched by built-in and user-defined concepts [3].
Examples of domain concepts that are shared among most
policies are: frequency, power, location, powermask, and
signal.

A policy is composed of several rules. To support
permissive as well as restrictive requirements, rules use either
the allow or the disallow predicate, respectively. Policy
rules are logical axioms that express under which conditions
these predicates hold. These axioms can involve any declared
parameters, which represent capabilities of the radio and the
results of sensing actions (among other things).

Conditions can also use predicates, which express modes of
operation, locations, and so forth. Thus, conditions allow for
dynamic adjustment of policies to the current situation. For
example, a rule could allow military radios to use the GSM
band when a conflict starts, but not earlier. Clearly, such
context-sensitive policies can respond to the situation in
various ways, invoking either restrictive or permissive rules.

Numerical constraints are often used in policies spec-
ifications and can be directly expressed using built-in
predicates in CoRaL. For example, a policy might require that
for frequencies between 5000 and 5500 MHz, the transmission
power should be at most 2dBm. A special syntax is available to
specify powermasks, where the power is not constant but varies
with frequency.

Restrictive (disallow) rules take precedence over per-
missive (allow) rules. A policy can also be extended by rules in

another policy without causing logical inconsistencies. For
example, one policy may have a rule allowing the use of
frequencies 5000 to 5500 MHz, whereas another policy might
disallow the use of frequency 5250 MHz, as well as allow
frequencies between 5200 and 6000 MHz. Thus, the
combination of policies will allow the use of frequencies
between 5000 and 6000 MHz, with the exception of frequency
5250 MHz.

Policies and ontologies can refer to concepts defined in
other ontologies with a use statement. This capability supports
modular specification and reuse of policies and ontologies.

In addition to built-in types, variables, functions and
predicates, CoRaL allows user-defined concepts. Formally,
these concepts are expressed as equational or non-equational
axioms in our logic. Concepts which are common across
several policies can be factored out into ontologies, which can
represent hierarchies of types and related functions or
predicates. Formally, the only difference between ontologies
and policies is that ontologies only define concepts and have no
rules, whereas policies must have at least one rule and may also
define concepts. Example ontologies that are useful for
spectrum policies are discussed in the next section.

B. Ontologies
In our work on XG, we defined the ontologies summarized

in Figure 1. We have ontologies for basic types (such as
bandwidth, frequency, and power), radio capabilities, evidence,
signals, time, powermasks, transmissions, and request
parameters (among others). These ontologies give an extensible
base for the parameters over which policies can be formulated,

Figure 1. Example Ontologies. Each box represents an ontology. The name on the top of the box is the name of the ontology. An arrow
between two ontologies indicates that the ontology at the tail of the arrow uses the ontology at the head. For brevity, we only list types
(in arial font) and variables (in italic font) in some of the ontologies. Functions, predicates, and axioms are not shown. Type hierarchies
are represented using indentation.

but should not be regarded as the only possibility. CoRaL
expresses ontologies and domain concepts using type and
subtype declarations. New requirements can be captured in
user-defined ontologies, which may also build on these basic
types.

Our request-parameter ontology defines three variables that
are typically contained in a transmission request. The variables
are req radio : Radio, which describes characteristics of the
requesting radio; req transmission : Transmission, which
details parameters of the requested transmission, such as
frequency and power; and req evidence : Evidence, which
contains one or more evidence objects, each of which generally
pertains to location, signal, or time of sensed data that was
collected by the radio.

These parameters refer to concepts such as Transmission,
Radio, and Evidence. These concepts are modeled in CoRaL as
types distributed over various ontologies, and build on the basic
types shown in 1. Typically, a concept defines several
operations.

As an example, we show more detail about the ontology for
transmission. One operation on the Transmission type is a
function that determines the center frequency of the requested
transmission:

centerFrequency: Transmission → Frequency

Other operations, such as mean EIRP (Effective Isotropic
Radiated Power), are defined in a similar fashion. The
formalization of the transmission ontology in CoRaL is given
below.
ontology transmission is

use time,basic_types;

public type Transmission;

public const centerFrequency :

Transmission -> Frequency;
public const bandwidth :

Transmission -> Bandwidth;
public const maxOnTime :

Transmission -> TimeDuration;
public const minOffTime :

Transmission -> TimeDuration;
public const meanEIRP :

Transmission -> Power;
public const transmittedBy :

Transmission -> Transmitter;
end

Powermasks are another typical concept in spectrum

policies. As an example, the powermask for DFS (Dynamic
Frequency Selection) [4] is depicted in Figure 2 and formally
defined below using CoRaL syntax.

We provide an intuitive syntax for defining powermasks,
most of which are either linear or step functions. CoRaL
represents a powermask as a list of tuples of numbers (x,y),
where x refers to the frequency values on the x-axis (in MHz)
and y refers to the power values on the y-axis (in dBc). CoRaL
connects the points either as a linear or step function, as
indicated by a keyword preceding the list of tuples. For
example, the DFS powermask in Figure 2 is represented in

CoRaL as follows. (The five circles in the figure correspond to
the first five tuples.)
defconst maxInBandLeakage : Powermask =

symmetric linear
[(0, 0), (9, 0), (11, 20),
(20, 28), (30, 40), (180, 40),
(180, 42), (216, 42),
(216, 47), (inf, 47)]

IV. SPECTRUM POLICY EXAMPLES
For the experiments described in Section VII, we wrote

listen-before-talk policies [5] over a broad range of
frequencies. The policies were chosen to illustrate some of the
main features of CoRaL (but they do not exhibit all language
features), and to be realistic and thus potentially relevant for
spectrum-sharing radio operations in the field.

Listen-before-talk policies require a radio to actively sense
its environment and submit data to the reasoner about what
other signals were detected at what power levels. To add
realism, we also included operational phases and geographical
information as parameters.

We defined example operational phases, such as “Day-to-
Day”, “Natural Disaster”, and “Training and Testing”, each
with policies that address the specific communication needs of
that phase. To mimic two countries with different regulations,
we defined two adjacent regions that would be traversed by the
radios. The radio must submit information about location and
phase to the PR to get transmission requests approved by
policies that require those parameters. The PR will apply the
policies appropriate to the location and phase of a request.

Figure 3 depicts three (of many possible) categories of
policies used in our experiments. While our work has not
formalized any such higher-level classifications, these could
provide utility and aid understanding. For example, the
categories in Figure 3 could correspond to increasingly higher-
level regulatory agencies.

The policies in the inner circles generally require
increasingly more information in transmission requests. Thus, a
policy belonging to the innermost circle often requires
information about operational phases, location, frequencies,
and sensed state of the spectrum. The policies in the middle
circle only check for operational phases, frequencies and state
of the spectrum, while policies in the outermost circle might
only constrain the frequencies to be used.

Figure 2. Example DFS Powermask. This figure (from [4]) has been
annotated to highlight points in the graph corresponding to tuples in the
CoRaL representation of the powermask.

Some of the policies are permissive and allow use of
spectrum under given conditions. Other policies are restrictive
and forbid or restrict the use of bands. Figure 4 summarizes
some of the policies used in our experiments. The restrictive
policies in row 2 forbid access to the Satellite, Aeronautical
Radionavigation, and Maritime Distress bands, as indicated by
the Protected keyword. (We show details of such a policy
below).

Figure 4. Overview of encoded policies.

For other bands, permissive policies define the strength of
signals that can be sensed by the radios and still allow
transmission. The thresholds depend on the operational phase.
For example, for the broadcast bands, a policy states that if the
radio is operating in the “special event” phase and only senses
signals that measure 90 dBm or less, then transmission is
allowed (we show details of this policy below). If the radio was
operating during a natural disaster, it would be okay to transmit
even in the presence of signal up to 85 dBm. For some policies,
different thresholds are given for the same frequency band in
the two regions to illustrate how different regulatory bodies
(different nations, service providers, and so on) might allow the
use of spectrum under different circumstances.

Some of the of frequency bands we used for the Fixed
Mobile policies (all in MHz): 3074.8, 75.287.2, 225328.6, 335-
400, 420450, 12401390, 17551850, and so on. These frequency
ranges reflect the current assignments of these bands for non-
federal government in the U.S. [6]. However, our goal was not
to capture current practices and policies. Our focus was on
evaluating CoRaL and its reasoner. To test the expressiveness

and utility of our language, we have successfully implemented
in CoRaL major parts of the Dynamic Frequency Selection
(DFS) algorithms for the unlicensed 5 GHz band [4].

Part of the CoRaL encoding of the restrictive policy for the
aeronautical radionavigation band follows.
policy aeronautical is
use request_params;
use mode;

disallow if
(mode(Day-to-Day) or mode(SpecialEvent)

 and
(centerFrequency(req_transmission)

in {74.8 .. 75.2} or
 centerFrequency(req_transmission)

in {108.0 .. 117.975} or
 ...
 centerFrequency(req_transmission)

in {2700.0 .. 2900.0});

end

The policy imports the request_param ontology (and the
ontologies imported by this ontology via transitivity of import),
which defines concepts such as centerFrequency,
req_transmission, and the modes. This policy has only one
rule, which disallows the use of any of the specified frequency
ranges in the specified modes.

The following policy combines phase, sensed evidence
about the spectrum state, and location. The first allow rule
makes the specified frequency ranges available for
transmission, for radios that are in Day-to-Day or
TestingAndTraining mode and have sensed signals of less
than 115 dBm. The second rule allows access to another set of
frequencies during a SpecialEvent, but only if the radio is
located in region r1. Whereas the location information restricts
use, the threshold of the second rule is more permissive (95
dBm instead of 115 dBm).
policy fixedMobile is

use request_params;
use mode;
use region;

allow if
(centerFrequency(req_transmission)

in {225.0 .. 328.6} or
...
centerFrequency(req_transmission)

in {2200.0 .. 2290.0})
 and
 (mode(Day-to-Day) or mode(TrainingAndTesting))
 and
 ((exists ?se:SignalEvidence)

req_evidence(?se) and
peakRxPower(?se) =< 115.0);

allow if
(centerFrequency(req_transmission)

in {30.0 .. 74.8} or
...
centerFrequency(req_transmission)

in {2900.0 .. 3000.0})
and
(mode(SpecialEvent)
or
((exists ?le : LocationEvidence, ?l : Location)

req_evidence(?le) and

Figure 3. Classification of encoded policies used in our experiments.

location(?le) = ?l and
locationInEllipse(?l,r1) = true))

and
((exists ?se:SignalEvidence)

req_evidence(?se) and
peakRxPower(?se) =< 95.0);

V. POLICYBASED RADIO ARCHITECTURE
The XG architecture [7] (see Figure 5) consists of the radio

hardware and firmware, which includes the RF frontend as well
as sensors; the System Strategy Reasoner (SSR), which is
typically specific to the radio hardware and can perform low-
level tuning and real-time optimizations; and the platform-
independent Policy Reasoner (PR), which determines whether
transmission requests from the SSR conform to the currently
loaded policies. The SSR must not transmit unless it has
received message from the PR that the transmission is allowed.

Figure 5. XG Architecture. The small boxes are hardware components. The
SSR is a radio component that exploits transmission opportunities. This is one
of many possible architectures for using our policy language.

There are several different types of messages:

• RF-SSR. All incoming messages to the XG radio arrive
at the RF unit, and end up in the SSR.

These messages can be control messages, such as
updates to system strategies, updates to policies, or
messages controlling the coordination with other
radios. Similarly, all messages going out from the XG
radio originate in the SSR and are passed through the
RF component. Outgoing messages can also be control
messages (acknowledgment of policy updates, requests
for new control channels, etc.) or data messages.

• Sensors-SSR. The details of this interface will be
determined by the radio designer. We assume that the
sensors send their received data (or conclusions drawn
from it) to the SSR. The analysis of sensor data, sensor
data aggregation, signal detection, and other such
processing could happen in the sensor component(s), in
the SSR, or in a dedicated component (not shown). The
SSR may send control messages to the sensor
components.

• SSR-PR. There are several types of messages in the
interface between the SSR and the PR. Transmission
requests: Before an XG radio can send a transmission,
it needs approval from the PR. The SSR builds a
transmission request, and sends it to the PR. The PR
reasons about the request and the active policies, and
responds by sending one of three replies to the SSR:

(1) The transmission is allowed. (2) The transmission
is not allowed. (3) The PR returns constraints that must
be satisfied. Given acceptable values of the
underspecified request parameters, the transmission
will be allowed. Policy updates: The SSR can also
send policy-update messages to the PR, in order to add
or remove policies to and from the PRs policy base and
to activate or deactivate policies. Policy information:
The SSR can request information regarding which
policies are loaded or active.

VI. PROLOGBASED POLICY ENGINE
SRI International (SRI) has been mainly concerned with the

Policy Reasoner (PR) module of the XG architecture. We have
implemented a prototype PR in Prolog1, which gives yes/no
answers to transmission requests, covering a large subset of the
CoRaL language. We are currently investigating options for
implementing a PR with the ability to return constraints on
failed requests.

A. Policy Reasoner Components
Figure 6 shows an overview of the main modules of the PR,

and some of the relationships between them. This architecture
is not part of the XG Architecture. The PR could have been
implemented differently. The larger ovals show the
implementation languages. Most of the modules are
implemented in Java, but the reasoning is done in Prolog. The
SSR can be implemented in any language.

Figure 6. Policy Reasoning Engine Modules

From the perspective of the SSR, the PR can be viewed as a
black box, with a certain input/output behavior defined by the
SSRPR interface described in Section V.

SSR. All messages to the PR originate from and are
initiated by the SSR. The PR never initiates communication
itself.

Policy Console. A text-based interactive application that
can be used to debug and test policies, perform requests, etc.

1 The reasoner can be provided to interested parties upon request, subject to
approval from our sponsor DARPA.

Policy Manager. This module controls all operations of the
PR. All of the methods in the SSRPR interface are
implemented as static methods of the PolicyManager Java
class. The Policy Manager delegates functionality to various
other modules, as can be seen in Figure 6. This module keeps
lists of all currently loaded/active policies.

Policy Reasoner. This module is a thin Java wrapper
around the module that does the actual reasoning. There is a
Reasoner Java interface with only a few methods, and one
implementation, PrologReasoner. This means that we could
replace the reasoner backend without changing anything else in
the implementation. The main functionality in the
PrologReasoner class is

• Translating policies, ontologies, and requests from
abstract syntax to Prolog.

• Loading and unloading these modules to/from Prolog.

• Asking Prolog to perform the actual queries, and
returning the results as a Java object (of the Result
class).

Parser. This module takes a CoRaL policy, ontology, or
request as input and produces abstract syntax, in the form of
Java objects, as output. The Java code for the parser is
generated automatically at build time from a grammar
specification, using the JavaCC parser generator.

Typechecker. Type checking is done on the abstract
syntax, i.e., on Java objects. After being type checked, the
abstract syntax is supplemented with some type information,
which is used in the translation to Prolog, among other things.

Translator. This module translates policies, ontologies,
and requests from abstract syntax to Prolog (see the following
section).

External Functions. Some of the functionality needed by
CoRaL policies cannot (or should not, due to efficiency
concerns) be implemented in CoRaL itself. These functions
have been implemented in Java. So far, the external functions
fall into the following categories:

• Powermask operations

• Time operations

• Geometric operations

Prolog Runtime. This module is the only part that is
implemented in Prolog. It consists of

• The translated policies, ontologies, and requests.

• Code for equality and function evaluation, which is not
normally supported in Prolog, and therefore has to be
encoded (see the next section).

• Code for the built-in predicates and functions (<, +,
mod, etc).

• Code for marshalling parameters between Prolog and
the external functions in Java.

B. CoRaLtoProlog Translation
When implementing a language (the object language) using

another language (the meta-language), there are two main
approaches one can use:

• The object language is translated to the meta-language.

• The object language is encoded and evaluated in the
meta-language.

The first approach is generally more efficient, because there
is no overhead involved in evaluation. The object language is
essentially executed by executing the meta-language. However,
one is limited to the operational behavior of the meta-language.
With the second approach (encoding) one has more flexibility,
since one can implement the desired operational behavior in the
meta-language.

Mixes of the two approaches are also possible. The PR
described in this report uses such a hybrid approach. The
following parts of the language are translated: CoRaL
predicates are translated to Prolog predicates, CoRaL
“standard” rules become Prolog rules, CoRaL policies,
ontologies, and requests are translated into Prolog modules.
There were some differences between how Prolog handles
modules and CoRaL handles them, so this was not a
completely straightforward translation. Finally, CoRaL abstract
data types become Prolog unary predicates.

However, Prolog’s native operational semantics does not
support equality constraints, user-defined equations or function
evaluation. The only way to achieve those features in Prolog is
to use the encoding approach. The encoding is rather shallow:

• Equality constraints are represented by a Prolog
predicate eq/2, defined in the pre.pl file. There are
Prolog rules for the transitivity and reflexivity of
equality.

• User-defined equations are represented by a rewrite/2
predicate, and are always interpreted in a directional
left to right. These equations are taken into account
when equality constraints are evaluated.

• Functions are represented as compound Prolog terms.
They are evaluated, when the arguments are provided,
by applying rewrite rules, in a call-by-value (eager)
evaluation fashion.

C. Example Translation: CoRaL to Prolog
We present an example of the translation (or encoding) of a

CoRaL policy to Prolog. We use a listen-before-talk example
policy that uses time and location information. Such
information is often used in policies relating to television
broadcast.

The policy allows XG radios to transmit in the band 450
MHz to 600 MHz if they (1) transmit continuously for at most
1 second with (2) a bandwidth of at most 6 MHz, (3) have off-
time of at least 150 milliseconds, (4) have duty cycle of at least
50% across a 2second period, (5) if they sample spectrum at
least once every 5 seconds for TV signals using power sensing
but no subnoise detection of DTV signals, (6) they received

spectral power in the channel they are transmitting equivalent
to or less than 100 dBm, and (7) the peak power spectral
density of their emission does not exceed 53 dBm/Hz. This
policy is encoded in CoRaL as follows:
policy tv1 is

use ssc_params;
defconst F : Frequency =

centerFrequency(req_transmission);
allow if

F in {450.0 .. 600.0} and
timeDurationLessThanOrEqual(

maxOnTime(req_transmission),
td(0,0,0,1,0)) = true and

bandwidth(req_transmission) =< 6.0 and
timeDurationLongerThanOrEqual(

minOffTime(req_transmission),
td(0,0,0,0,150)) = true and

meanEIRP(req_transmission) =< 53.0 and
(exists ?se:SignalEvidence)
req_evidence(?se) and
peakRxPower(?se) =< 100.0 and
{F3.0 .. F+3.0} in

scannedFrequencies(?se) and
(exists ?d:PeriodicSignalDetector)

detectedBy(?se) = ?d and
sampleRate(?d) >= 0.2 and
dutyCycle(?d) >= 0.5;

end

The encoding is
Header
:module(tv1,[]).
:style_check(singleton).
:style_check(discontiguous).
:dynamic allow_l/1.
user:allow(X) :
context_module(M),
debug:debug(runtime,debug,”˜n˜w:allow”,[M]),

allow_l(X).
rewrite_l(if(F,M1,M2),X) :

call(F) > X=M1 ; X=M2.

%Rules
allow_l(tv1) :
in(centerFrequency(req_transmission),
range(450.0,600.0)),

eq(timeDurationLessThanOrEqual(
maxOnTime(req_transmission),

td(0,0,0,1,0)),true),
lte(bandwidth(req_transmission),6.0),
eq(timeDurationLongerThanOrEqual(

minOffTime(req_transmission),
td(0,0,0,0,150)),true),

lte(meanEIRP(req_transmission),
uminus(53.0)),

(‘SignalEvidence’(Se),
req_evidence(Se),
lte(peakRxPower(Se),100.0),
in(range(sub(centerFrequency(req_transmission),

3.0),
add(centerFrequency(req_transmission),

3.0)),
scannedFrequencies(Se)),

(‘PeriodicSignalDetector’(D),
eq(detectedBy(Se),D),
gte(sampleRate(D),0.2),
gte(dutyCycle(D),0.5))).

In these policies, we can observe the shallow encoding of
function applications as compound Prolog terms, the
representation of built-in predicates (e.g., eq for equality, lte for

less than or equal), and so forth. We also see that the defined
constant F has been substituted, because Prolog does not
natively support definitions. So centerFrequency

(req_transmission) occurs everywhere in place of the
defined constant F (which has the same behavior). We can also
see how some special syntactic forms of CoRaL have been
translated, for example, {450.0 .. 600.0} became
range(450.0,600.0).

We could have accomplished this in another programming
language. However, we make use of goal-directed reasoning,
which is well supported by Prolog. We mentioned that abstract
data types are translated to unary Prolog predicates. We can see
two examples above: ‘SignalEvidence’ and
‘PeriodicSignalDetector’ (these are in single quotes
because Prolog would otherwise interpret them as variables).
Let us look at the existential quantifiers in the policy above.
We have (exists ?se:SignalEvidence)....

In the Prolog translation, this becomes ‘SignalEvidence’
(Se).

?se has become Se because variables have to start with an
uppercase letter in Prolog. This translation has the correct
behavior, because of Prolog’s unification and backtracking
features. Prolog will see ‘SignalEvidence’(Se) as a goal that
must be satisfied. This will happen if there is a rule that unifies
with this goal. For example, if we have, in a request, a line
sigev : SignalEvidence; this is translated to the Prolog
version SignalEvidence(sigev)

This will unify with SignalEvidence(Se), with the obvious
substitution Se = sigev. Prolog can now continue to the next
goal, keeping this substitution for whenever the Se variable
next appears. If some further goal fails, Prolog will backtrack
to the same goal again, and try another value for Se, if there is
one. Therefore, the existentially quantified formula will
succeed if and only if the Prolog version succeeds. Of course,
this kind of execution can be very slow if there are many
unifiers, and only a few of them succeed.

D. Limitations of Prolog Encoding
The Prolog encoding of policies works essentially by

executing them. This is usually very efficient, but is also has
serious drawbacks.

Universal quantifiers. We cannot translate all kinds of
universal quantification to native Prolog. Some kinds are not
problematic. For example, the universal quantifiers on the
outside of rules can be handled because they are already
implicitly in Prolog rules. Also, some kinds of finite universal
quantifiers are handled by trying all possibilities. For example,
(forall x:Int in [1,2,3]) p(x) is translated to
forall(X,(member(X,[1,2,3]), p(X))). Prologs forall
operator does what we just said: It tries all possibilities, i.e. all
unifiers. So, in this case, X will be unified first with 1, and the
p(1) goal will be tried. If this succeeds, X is unified with 2, and
p(2) will be tried, and then the same for p(3). Only if all three
goals succeed does the whole forall statement succeeds. Our
comments on the efficiency of using unification for existential
quantification are true for universal quantification and result in
even worse efficiency. In the existential case, we can at least

quit when we find a unifier that makes the existential statement
succeed. In the universal case, we always have to try all
substitutions.

Constraints. In the future, we plan to extend the PR to
return those constraints that still have to be satisfied before an
underspecified request can be approved. These constraints can
guide the SSR towards transmission opportunities under the
current policies.

The PR must return constraints when a policy fails due to
the request being underspecified. For example, given a request
for certain frequencies, the PR might return a constraint on the
maximum power. While Prolog does have the so-called clp/r
constraint-solving capability for linear arithmetic, we have
found this to be inadequate because of lack of support for
negations and quantifiers.

Given these limitations and the fact that only a fragment of
CoRaL has been implemented currently, we nevertheless have
been able to encode and execute all the policies that were
desired for our XG experiments and demonstration.

VII. REASONER CAPABILITY DEMONSTRATION
XG technology was demonstrated for the first time to key

stakeholders at Fort A.P. Hill in Virginia, in August 2006. The
demonstration included the functionality of XG Radios
developed by Shared Spectrum Company and the CoRaL
language and the Policy Reasoner developed by SRI
International. The test was carried out in the geographic region
(known as the ‘Drop zone’) shown in the map on the upper left
hand corner of Figure 7 (Marked as [A]).

Pairs of XG radios formed communication links and
traversed a path from the region shown as ‘Metropolitan Area’
to the ‘Disaster Area’ and back. Throughout the drop zone,

legacy radio pairs were placed and formed a separate set of
communication links. The legacy radios were used for the
purpose of generating interference in the communication
channels used by the XG radios and to test if such interference
is detected by the XG radios and, if so, whether the channel
would be abandoned and the XG radios would switch to a
channel which would not cause interference.

The tests conducted at the Fort A.P. Hill drop zone
successfully demonstrated that the XG Radios were adapt at
detecting interference and changing communication channels
rapidly to avoid interference. In fact, the channel switch was so
fast that the legacy radios were not affected, showing readiness
for real-life scenarios.

The XG radios in this demonstration did not use SRI’s PR,
but instead used a simpler reasoner with a less powerful policy
language, but one that had the same form/fit/function as SRI’s
PR. The standalone demonstration of SRI’s PR demonstrated
the wide array of policies that the CoRaL language can express,
and the speed and scalability of the PR, which was fed
thousands of transmissions requests in a few seconds. All the
policies summarized in Figure 3 of Section IV were active.

To test the scalability of the PR, we generated requests for
transmission for the entire scan range of the Rockwell sensor
used by the XG radio (from 20MHz to 2500MHz) in 1MHz
increments. Therefore, for each pass of the sensor, the PR
received approximately 2500 requests, which is many more
than any realistic SSR would send. The PR processed about
200 requests per second. This 5ms average time is more than
adequate to support the rapid abandonment time required by
XG to avoid interference.

The graphical user interface of the PR demonstration
consisted of two windows (Figure 7 for inputs and Figure 8 for
outputs). The four parameters that make up a request are

Figure 7. Request Parameters GUI.

location, operational phase, frequency and sensed signal
strength, which are depicted by regions marked AD
respectively in Figure 7. The drop zone marked [A] consists of
two sub-regions “Metropolitan Area” and “Disaster Area”,
which were used to depict the PRs ability to do geographic
reasoning using latitude/longitude coordinates. The underlying
policies change as the radio moves between regions or changes
operational phases.

Transmission requests are defined in CoRaL. A typical
request in the PR demonstration had the following form:

request xgreq is
centerFrequency(req_transmission) = 1250.00;

public const se : SignalEvidence;
req_evidence(se);
peakRxPower(se) = 79.0;

mode(SpecialEvent);

public const le : LocationEvidence;
req_evidence(le);
location(le) = (112.0, 215.0);

end

Figure 8 depicts the results returned by the PR for the set of
requests submitted to it. The field marked [H] in this figure
denotes the total spectrum currently available for military use
in the 20MHz2500MHz range (see [6]).

Using the policies summarized in Section IV, we
demonstrated the use of CoRaL policies to dynamically change
how aggressive the radio is in accessing spectrum, based on the
location of the XG radio, its operational mode, and the sensed
signal strengths.

The demonstration was carried out by changing the
operational phase in the following sequence: Day-to-Day,
Special Event, Natural Disaster, Training and Testing. For each
phase, we ran the 2500 requests twice with different sensed
data. The results of these requests are illustrated on the bottom
of Figure 8 using color coding for the reasoner answers. Each
black/grey/white stripe corresponds to the answers for an
operational phase, starting with the Day-to-Day phase on the
bottom. On the top of Figure 8 are four fields that show the
total available spectrum for each of these operational modes

using an XG radio. As expected this amount increases
noticeably from the first operational mode to the third
monotonically and is consistent with the behavior specified in
the CoRaL policies. The total available spectrum for the
operational phase “Special Event” is an intermediate value and
depicts the ability of the PR to be fine tuned to fit custom
needs.

Three colors, White, Black and Gray are used in Figure 8 to
denote different responses from the XGPR for a request. We
used the following color coding for answers from the PR (see
Figure 9). Black denotes a frequency band which is explicitly
protected by one of the active policies. White denotes a band
for which transmission is allowed, either because it is assigned
or because there is a sharing opportunity given current policies
and request parameters. Gray denotes a band for which
transmission was disallowed. Given the active policies in the
demonstration, this generally indicates an unacceptable
probability of causing interference.

Figure 9. Color Coding of Reasoner Replies in GUI.

The region marked [E] depicts the main characteristic of the
XG technology. In this case, none of the input parameters has
changed except for the location of the XG radio and the
strength of the sensed signals. A closer examination shows that
in this situation certain requests that were denied are now
approved, due to the change in location or sensed signals. Such
opportunistic spectrum access is the key achievement of the
XG technology and shows the policy-based radios adopting to
dynamic situations rapidly (the change from Gray to White and
vice versa).

Regions marked [F], [G] shows that the PR can change its
behavior to more aggressive access of spectrum by either
removing protections from protected frequency bands [G]
(black turns white or gray) or by increasing its thresholds for
interference [F] (grey turns white). The latter will, of course,
increase the probability of interference, but, at any given time,
the PR ensures that the radio behaves according to the currently
loaded policies, whatever those might be.

Regions denoted in white in Figure 8 depict requests that
were approved. These represent opportunistic spectrum access
that conforms to active policies, which implies an acceptably
low risk of interference.

VIII. CONCLUSION
Current radio technology allows us to aggressively access

spectrum by ignoring sensed signals or preset thresholds, but
the risk of interference is high. The policy-based XG
technology provides a framework within which dynamic
behaviors for radios can be specified by policies so that
spectrum can be accessed opportunistically with an acceptably
low risk of interference.

Figure 8. Reasoner Answers GUI.

CoRaL has proven expressive enough to encode a wide
variety of spectrum-sharing policies, including DFS and all the
policies that were desired for our XG experiments and
demonstration. In our experiments, the PR processed requests
in less than 5ms on average, which is more than adequate to
support the rapid abandonment time required by XG to avoid
interference.

Future Work. Due to the expected complexity of future
policies, a policy language should allow for advanced forms of
policy analysis, e.g. detection of logical inconsistencies. We are
currently investigating the use of theorem proving technology
to provide specialized analysis methods for spectrum policies
written in CoRaL.

The functionality of the PR will also be extended. Our
current PR does only validate transmission requests and
provides yes/no answers. However, smart radios could exploit
the reason for which a transmission request failed, if that
information were available. Our next generation PR will
provide more detailed answers in the case of negative
decisions. In particular, we will return the additional
constraints, if any exist, that the radio must satisfy in order to
be granted use of the spectrum.

Finally, we will perform more experiments with larger
policy sets or more complex policies to test the limitations of
the reasoner.

ACKNOWLEDGMENT
This research was supported by DARPA’s neXt Generation

(XG) Communications Program under Contract Numbers
FA875005C0230 and FA875005C0150.

REFERENCES
[1] J. A. Stine and D. L. Portigal, “Spectrum 101. An Introduction to

Spectrum Management,” MITRE, Technical Report MTR 04W0000048,
2004.

[2] W. J. Byrnes and M. McHenry, “In the matter of Establishment of an
Interference Temperature Metric to Quantify and Manage Interference
and to Expand Available Unlicensed Operation in Certain Fixed, Mobile
and Satellite Frequency Bands,” FCC Comment, ET Docket No. 03237,
Apr. 2004.

[3] G. Denker, D. Elenius, R. Senanayake, M.O. Stehr, C. Talcott, and D.
Wilkins, “XG Policy Language. Request for comments.” SRI
International, Tech. Rep., 2006.

[4] “ETSI Standard EN 301 893 V1.2.2 (200306),” 2003, reference
DEN/BRAN0020002. [Online]. Available: http://www.etsi.org

[5] A. E. Leu, M. McHenry, and B. L. Mark, “Modeling and analysis of
interference in ListenBeforeTalk spectrum access schemes,”
International Journal of Network Management, vol. 16, no. 2, pp. 131–
147, 2006.

[6] “United states frequency allocations for radio spectrum,” October 2003.
[7] D. Elenius, G. Denker, and D. Wilkins, “XG Architecture. Request for

comments.” SRI International, Tech. Rep., 2006.

	Select a link below
	Return to Proceedings

