
SUMMER CONFERENCE 

University of Sussen 



A.P. W l e r  and 
K. J. Popplestone 

I n f e r r i n g  t h e  p o s i t i o n  o f  bodies  f m a  1 
s p e c i f i e d  s p a t i a l  r e l a t i o n s h i p s  

A 1  and sensori-motor i n r e l l i g e n c e  14 John Burge 

Representing nega t ion  i n  a P lanner  2 6 
system 

D.J.N. Davies 

Understanding s i n g l e  p i c t u r e  programs 37 I r a  P. Golds te in  

Steven Hardy . 

P a t r i c k  J. Hayes 

Automatic induc t ion  o f  LISP f u n c t i o n s  50 

Some problems and non-problems i n  6 3 
Representa t ion  theory  

Programs t h a t  w r i t e  programs and 80 
know what they  a r e  doing 

John Knapman 

C. Lamontagne Defining some p r i m i t i v e s  f o r  a  90 
computat ional  model o f  v i s u a l  motion 
percept  i o n  

Automatic g e n e r a t i o n  o f  p r o g l l n s  102 
c o n t a i n i n g  c o n d i t i o n a l  s t a t m n t s  

David C. Luckham 
and Jack R. Buchanan 

Alan K. Mackuorth 

Donald Michie 

Using models t o  s e e  1 2  7 

A theory  o f  e v a l u a t i v e  comments i n  138 
chess  

P.D. S c o t t  C o r t i c a l  embodiment o f  procedures 160 

Aaron Sloman On l e a r n i n g  about  numbers 173 

Brian Smith and 
Carl l iewit t  

Towards a p r o g r a m i n g  a p p r e n t i c e  186 

Active d e s c r i p t i o n s  f o r  r e p r e s e n t i n g  214 
:Knowledge 

James L. S t a n s f i e l d  

Gerald 2ay Sussaan 

<ennetn J. Ttlmer 

The v i r t u o u s  n a t u r e  o f  bugs 2211 

Conputer percept ion  o f  curved 
o s j e c t s  

Action percept ion  247 

David  k i l k i n s  

Yorick wiiks 

h non-clausal  the3rem proving system 257  

.A colinptiter systein f c r  making i n f e r e n c e s  268 
about n a t u r a l  l a n g u a e  



A RON-CLAUSAL THEOREM PROVING SYSTEM 

by David Wilkins 

ABSTRACT: There are reasons to suspect that non-clausai first-order logic 
expressions will provide a better base lor 3 theorem prover than conventional clausal 
form. A complete inference system, QUEST, for the first-order predicate calculus using 
expressions in prenex form is presented. Comparison of this system with SL-resolution 
shows  that  clausal techniques can be transferred to prenex form and expected advantages 
d o  seem t o  appear. 

K E Y  WORDS: resolution, clause, prenex form, SL-resolution 

I -  Introduction 

A predicate calculus expression in prenex form is obtained from a given wff by 
eliminating implication signs, standardizing variables, reducing the scopes of negation signs, 
skolemizing existential quantifiers, and removing universal quantifiers; see  Nilsson(l971) 
f o r  a precise delinition. Prenex lorm rlirfers from conventional clausal lorm only in that  
distributivity is not repeatedly applied to yield an expression in conjunctive normal form. 
T h e r e  a r e  a number of reasons for suspecting that prenex lorm would be superior t o  
clausal form in automatic theorem-proving. 

As anyone who has converted large expressions to clausal form knows, the 
application of distributivity causes a multiplicative explosion in the number of literals s o  
using prenex form will at least save storage and execution time (human or otherwise). 
Another  advantage is that the same information is not spread over a number of clauses. 
if the  expression A\/Bv(Cr\DnE! is necessary in a refutation, a resolution-type system 
will resolve away A and B and one of C,D, or E. A clausal theorem prover may refute A 
and B and get stuck on C. It then has to back up and try clause ABD which will involve 
redoing the refutations of A and E, Current theorem proving systems do not avoid this 
redoing of  work but this wocrld be a natural resu!t of using prenex form. With prenex 
form we also gain the a b i l i ~ y  to use siibevpressions t h a t  are "anded" together. For 
example, in the expression AvEv(~CVD)A(-CVE)~ the YCVE subt.xpression can be used 
t o  r e fu t e  the CvD suherpression without puling in the "higher level" information that  
resolving against the c!ause AF-C hcu!d. In this simple exampie. a clausal system could 
avoid re-reruiing 4 and B b u ~  !he i b i i i i y  !o use subexpressioca becomes v~!u;ble in the  
generai case. 

Theorem provers a re  considered inefficienr proSlern solvers, bui given an 
unsatisfiable set of predicate calculus expressions with no mesning at:ached to them, I 
would be worse  than inefficient in finding a refutation. The theorem prover needs some 



kind of knowledge about its input, or must at  least be given advice. I will present a few 
reasons why I think prenex form is more suited Tor giving advice about than is clausal 
form. We find non-clausal forms easier to express ourseives in since we write axioms 
that way. Suppose 1 have an axiom which rspresents the fact F. I f  distributivity shatters 
this axiom into n clauses, the only plausible interpretation is that these clauses are all the 
possible cases that can occur. The advice cbnges from "use this axiom to prove I" to 
"here is a set  of axioms related to F, use as many as are needed". Actually writing out 
expressions and looking at their clausal and hon-clausal forms should convince the reader 
that clauses are not the best way to conceptualize things. 

QUEST is a complete inlerence system lor unsatisfiable sets of expressions in 
prenex form. It exhibits expected non-clausal advantages and is as computationally 
efficient as SL-reolution 141, one of the more sophisticated clausal inference systems. 

2-Def initions 

Prenex expressions are naturally tree-structured so I will use conventional 
terminology(Knuth 1968) to refer to trees except as noted below. Each tree has one 
particular node designated as the current node and this node is said to have control. 
Each node is the parent of the roots or its subtrees and each subtree is a son of the 
root node. Note that parent and son are not inverses. A node is an ancestor of a node, 
N, if  and only if it is the parent of N or the parent of an ancestor of N. A tree is a 
d-da_nt of a node N if and only if it is a son of N or a descendant of the root of a 
son of N. A node is a& i f f  it is the current node or an ancestor of the current node. 
The cousins of a node, N, in a tree, T, are all those (and only those) subtrees of T that 
are sons of N or sons ol  an ancestor of N in T, and in addition are such that their root 
node is not an active node in T. A cousin of the current node in a tree is said to be a 
current cousin in the tree. Branch nodes will be either A N D  nodes or OR nodes while 
terminal nodes will be either T(true), F(false), or a literal. 

If T is a tree and CL a substitution, then T*d denotes the tree produced by 
applying CL to all nodes in T. Two trees, T1 and T2, are unifiable iff there is a 
substitution, d, such' that T l*d  and T2*d are isomorphic, in the sense that there is an 
isomorphism, I, from the nodes of TI*& to the nodes of T2*d such that if  M and N are 
any two nodes in Tl*d  the following three statements are true: 1) if  N is an AND, OR, 
T, or F node then (NIT is the same type of node; 2111 N is a literal then (N)f is the same 
literal; 3)if M is the parent of N then (I1111 is the parent of (NIT. T1 is said to be the 
same (sub)tree as T2 i f f  T1 and T2 are unifiable with the null substitution. The negation 
of  a t ree is formed by doing the following three things to the tree: 1)replace all T nodes 
by F nodes and vice versa, 2)replace all AND nodes by OR nodes and vice versa, 
3)replace all literals by their negation. 

1 will now define the Truth Value Inference Rules which simply implement the 
definitions of "and" and "or". A node can be inlerred false i f f  the node is an A N D  node 
and the root of one of its sons is F', or the node is an OR node and the roots of all its 
sons are F. A node can be inferred true iff the node is an A N D  node and the roots ol 
all its sons are T, or the node is an OR node and the root of one of its sons is T. 



The expression input to QUEST are assumed to be conjoined together, sti an input 
s e t  is represented by a tree whose root is an A N D  node and the subtrees of the root  
a re  the expressions in the input set. 

An unsatisfiable tree, T, is minimallv unsatisfiable i f f  when any subtree of T which 
is the son of an A N D  node and not the only son of that A N D  node is removed from the 
tree, the resulting tree is satisfiable. 

3- Inference rules of QUEST 

The truth value inference rules have already been mentioned. Let T be a t r ee  
from which we are trying to infer false. Suppose N is the current node in T and let S be 
the son of N we are currently trying to refute. When N is an OR node, all sons must be 
refuted but when N is an AND node the search strategy may pick a son to refute. To be 
complete, the inference system must in general allow any son to be tried although 
QUEST restricts the choice in some cases without sacrificing completeness. The 
distinction between rule of inference and operation must be understood. The rules of 
inference presented here are ways of changing a derivation tree so the validity of the 
expression it represents is unchanged. QUEST changes these rules into operations (of 
the same name) by allowing substitutions to be made i n  order to apply the rule and by 
placing restrictions on the use of the rule. 

T o  develop the first rule, let 0 be the set of cousins of N in T which are sons of 
OR nodes, with S deleted from the set. Rule one considers all members of 0 to be false 
and infers whatever it can about S. Intuitively, the validity of this runs as follows. To  
obtain a refutation of T by working at N, all sons or OR nodes which are ancestors of N, 
i.e. 0, must be inferred false if inferences about N are to help in a refutation. So if S is 
to  be inferred false above N, it is safe to infer S false at N and wait for the refutation 
above N. This is valid because all inferences at a node are made using the information in 
a node's ancestors. Therefore, if  S is the same subtree as a member of 0, it is inferred 
false, and if it is the same as the negation of a member of 0, it is inferred true. This 
rule is called the bctorina rule of inference because it's role corresponds to the role of 
factoring in clausal inference systems. S is said to be factored on and the member of  0 
is said to  be factored a~ainst. 

Let A be the set of cousins of N which are sons of AND nodes, with S deleted 
from the set. Rule two considers members of A true and infers whatever it can about S. 
This simply uses the information provided by the axioms used so far. If S is the same 
subtree as a member of A,  it is inferred true, and i f  it is the same subtree an the 
negation of a member of A, it is inlerred false. This rule is similar to ancestor 
resolution in linear resolution sys(ems, b u t  has added aspects bec;l~se ol the non-cliusal 
sfructure. To avoid confusion, ii will be cilied ti.,. smashing r u l e - o h h c ~ c p ,  S is said 
to be sm~shd and the member oT A is said to be smast~ed i~a ins t .  1 shill call the 
combination of smashing and factoring the reduction rule of infs-re=. Reduction and 
extension (a term used in the next paragraph) are both used in SL-resolut~on lor similar 
ideas. 



The last ~nference rule i s  the one corresponding most closely to  resolution. It 
grows the current tree and is cailed the extension rule of tnlerence, Extension says that 
members of .4 (the se t  def~ned rn the last paragraph) can be grown onto N as I o l l o ~ s :  I F  
N is an OR node then S can be replaced by a tree whose root IS an AND node w ~ t h  its 
subirees be~ng S and a copy of a member o l  A; IT N IS an A N D  node then simply add a 
copy of a member of k as a new son of N. The member or A IS said to be extended 

a& and S is said to be extended on. 

QUEST is basically these rules with strict restrictions put on them to guide the 
refutation and prune the search space. 

4- Informal description of QUEST 

QUEST has rive operations. Each operation produces a new tree from an old 
tree. A QUEST derivation is a sequence of trees where each is produced by applying 
one or the five operations to its predecessor. The object is to produce the tree whose 
root  is the node I? from the input tree. 

The most trivial operation is diving which simply moves control down one node to  
the root of a son of the current node. The truncation operation changes the current 
node to  F and moves control up to its parent whenever the current node can be 
inferred false by,a truth value inlerence rule. The reduction operation does inferences 
from the reduction rule of inference, but only when false is inferred, and then only when 
it is inferred from a son of the current node. The reduction operation, unlike the other 
two, may apply a substitution to the tree in order to make this inference. The deletion 
operation does true inferences from the reduction rule or inference, but only when a son 
of  an AND node that is not the only son of that AND node is inferred true. Deletion 
may not apply a substitution since true inferences are a sign that something has gone 
wrong so we don't want to waste effort producing them. 

The last operation is the extension operation. Growing the tree without a purpose 
will probably not get us any closer to a refutation so it will be required that the t ree 
ex~ended  against have a subtree which is the negation of S. The number of subtrees in a 
t r ee  increases with increasing tree size something like factorially or worse, so finding 
somethin2 to extend on may involve a huge number or unifiability tests. The test  Tor 
unifiabil~ty of two trees is not trivid since the nodes at one level can be ma:ched in 
many diiferent ways with the nodes at that level i n  the other tree. ThereCore QUEST 
does not allow extension on non-literal subtrees at all. Since only literals are extended 
on, the subtree extended against will always contain the negation of this literal after a 
substitution has been applied. This negation is called the IbIeraI extended again_si. The 
t ree  is grown as in the extension rule or inference and control is given to the root node 
of the extended against subtree. The extension operalion, by definition, also requires 
that any AND node in the subtree extended against which is on the path to the literal 
extended against, must refute the son which contains the I~teral extended against. This 
does not destroy completeness and significantly prunes the search space since only one 
son need be tried at these A N D  nodes, and also makes the operation more like resoiution 
slncp the extended against literal must eventually get smashed. 



QUEST has six restrictions on the applications of these operations which 
significantly prune the search space. 

I: The current tree can no longer be considered il an active node can be inferred 
t rue by the truth value inference rules and the reduction rule of inference. This does all 
true inferences not done by deletion. This restriction stops processing on trees that 
cannot lead to  a proor. 

2: The initial current node must be one that is in some minimally unsatisfiable 
subtree of the input tree. Thus only one starting point need be considered. This 
corresponds to support subset restrictions in clausal systems, but here the negation of 
the theorem can always be expressed in one prenex expression, so one starting point can 
be picked. 

3: At a particular OR node, all reductions must be done before any extensions o r  
dives. Without restrictions like this, the search space will be full of derivations that do 
the same operations in a different order. This eliminates all derivations which do 
extensions or dives before reductions at the same level. Hopefully, doing reductions first 
will instantiate the variables further thus reducing the number or possible unifications 
later on. 

4: If any current cousin can be inferred true or false by the reduction rule of 
inference, then this is the only allowable operation. If there is a false inference the node 
should have beer) inferred false when its parent had control, but instead an extension o r  
dive was done. Thus there is an easier proof than the one we are working on. If there 
is a true inference then either the first restriction will stop processing or a deletion will 
be done which simpliries the tree. 

5: I f  the next operation is to be extension or diving then it must be done on the 
son selected by the selection Function over OR nodes, This corresponds almost exactly 
to the selection restriction in SL-resolution. This also orders the applicable operations. 
I f  all nodes have n sons tlien a system without this restriction would have on the 
avrrage n! times as. many derivations i t  can produce. As would be expected, QUEST 
works for  any selection function over OR nodes. 

6: The same selec:ion restriction IS now ap;!ied to the sons that are reduced. 
The sam? factorial saving is made by not repeating the rzme rpduct~ons in different 
orders. The restricticn 1s implemented by defining a total ordering or the sons rarher 
than a function that picks one out. A function will not work because we cannot always 
apply reduction to a selected son. I f  the n e x t  opera:ion is  ~.cdtiction !hen it can only be 
done il no son greater than (In the giben crderiogi  he son beiitp redx1c.d has been 

This gires an inrormal desription of QL'ES'T that is exact as I cou:d ma4e it. The 
formal definition is fairly short and easy lo read but is n o t  within i h?  scope of this 
papsr. QUEST is sound and complete, but again the proofs are too fcng t o  present here. 
Tlie formal definitlon and proofs can be round in iWi!kins 1973). 



5- An Example 

I will present one example of QUEST in action. I will point out places where 
prenex form is an advantage in the hope the reader will recognize these as general 
phenomena ltkely to occur in most problem To make things readable, I will represent 
the trees graphically, AND nodes will be distinguished by drawing an arc through their 
branches. I wilt leave off the top AND node which has all the input expressions as its 
sons, but one should remember that it is there. The current node will be desgnated by 
an arrow. 

Theorem: Every integer greater than 1 has a prime divisor. This can be 
axiomatized as follows: D(x x) means any number divides itself. -D(x y)v-D(y z)vD(x z) 
represents the transitivity of divisibility. P(x)v(D(g(x) xhL(1 g(x))~L(g(x) x)) says that 
if  x is not prime then a number between 1 and x divides x. Let a be the least counter- 
example to the theorem. The negation or the theorem is as lollows: -P(x)v-D(x a) says 
that if x divides a then x is not prime. -L(1 x)v-L(x a)v(P(f(x))~D(l(x) x)) says that if x 
is between 1 and a then it has a prime divisor. 

A proof found by a POP-2 program implementing QUEST is presented in the next 
five diagrams. The meaning easily attached to these diagrams is as lollows: 1)Since a 
divides itself, it  is not prime. 2)Thus there is a number, g, between 1 and a which divides 
a. 3)a was the least counter-example so there is a number, f, which is prime and divide; 
g. 4)f does not divide a, since a is a emter-example. 5)By the transitivity of 
divisibility, this b a contradiction. 

lD(x a) is immediately smashed 
against input expression. 

Extension on -P(a) against second axiom, 
followed by smashing the literal 
extended against. A literal must 
be chosen to extend on. 



Extension on L(l g(a)) against the lourth axiom, 
followed by smashing the literal extended against. 
The next operation must be the smash of -L(g(a) a) 
against the L(g(a) a) ,  In clausal lorm, i f  vre had 
just used the clause with L(1  g(a)) in it, we would 
need another whole clause to get L(g(a1 a) and this 
would involve re-reiut~ng ail the literals above this 
A N D  node since distributivity would "attach" then to 
L(g(a) a). 

Extension on P(f(g(a))) against 
the third axiom followed by 
smashing the liieral extended 
agains:. 



Extension against the f irst axiom with smashing of the literal extended against. Now y is 
instantiated to  gfa) and both 7Ds are smashed. Truth value inferences then infer F from 
the whole tree and the proof is complete. Note that the same situation as before arises 
when we smash the 7Ds. They are smashed against l! and 21, both of which are sons of  
AND nodes dif ferent from the son extended on at that AND node. Thus clausal fo rm 
would have t w o  more extensions against clauses rather than two reductions. I hope the 
reader may recognize this ability of prenex form as a general advantage and not particular 
t o  this problem. In a sense, extension in prenex form sucks in  2 or 3 or  n clauses in  
compact form. hloreover they contain information likely to be relevant since one would 
usually not  expect a single axiom to contain parts irrelevant to each other. 



0-Comparison wifh SL-resolution 

Many of the ideas in QUEST come from SL-resolution so it is natural to compare 
the two. For the reader not familiar with SL, it is presented in (Kowalski and Kuehner 
1971). The purpose of this comparison is lo show that our clausal techniques can be 
carried over to  the prenex case, and to show how QUEST compares to clausal inference 
systems in general since SL is currently one of the better ones. 

A QUEST derivation tree can be considered as an SL chain. A cousin which is 
the son of an OR node would be a B-literal, the son of an AND node would be an A- 
literal, and top to bottom would correspond to left to right. Let us consider the case 
when clausal input is given to QUEST. All cousins are now literals so 1 will speak of 
QUEST trees as i f  they were SL chains. The only difference between QUEST and SL 
chains initially is that QUEST chains have the unit clauses tacked on the front as A- 
literals. This was done because I felt extension against a unit clause is more like 
reduction than extension. Either system could easily be changed to be like the other. 
With clausal input, QUEST will never do a dive and will never do a deletion unless the 
same clause is input twice. 

First, let us look at the admissibility restriction of SL. It says that no two 
literals in the chain may have the same atom unless the next operation is reduction. 
QUEST has the same restriction since two literals having the same atom is equivalent to  
being able to  infer a cousin true or false by the reduction rule of inference. Let us now 
consider the operations. 

The truncation operation is essentially the same in both systems. There are three 
differences in the reduction operation. Both systems require reductions at one level to  
be done before extensions but, as mentioned before, in QUEST this also applies to unit 
extensions. This is a trivial difference. SL does not allow factoring within a clause or  
ancestor resoiution (smashing) against the rightmost A-literal while QUEST does. SL 
makes up for this by allowing extension against all factors of the input clauses. Thus SL 
has fewer reduction choices'but more extension choices, but once again either system 
could easily be changed to be like the other. The third difference in reduction is the 
ordering of literals to determine the order of reductions. This simply applies the 
selection idea (the heart of the SL system) to reductions as well as  extensions, and 1 reel 
it should be included in SL. The only difference in the extension operation is the already 
mentioned one or SL having more extension choices. 

The differences when QUEST is applied to non-clausal input can he thought of as 
lollows. Some links in the chain are now poin!srs to 3 tree instead of Itterals. These 
trees can be reduced as they are or "expanded in  iins" by diving operations. There are 
now A-iinks in the chain that correspond to sons o i  AND nodes i n  the input tree. These 
provide information which in the clausal case, loosely speaking, is only provided as a new 
clause and then only with more literals in the clause because ol the distributivity 
applications. The following section gives evidence that the advantages one intuitively 
expects actually do appear. 



'?'-An implementation 

I wrote a POP-2 program implementing QUEST a t  the University of t s e x .  The 
program extends Boyer and Moore's structure sharing techniques (Boyer and Moore 1971) 
to  the prenex case. The purpose of the program is to run on examples in clausal and 
prenex forms with a breadthfirst search so as to get a fair comparison of the size of the 
search space. Since QUEST is fairly good on clauses as shown by its comparison to SL, 
this should be a fair comparison. Three statistics are given: 1) cpu tlme in seconds, 2) 
number of extensions against input expressions, and 3) number of derivations being 
processed in parallel by the breadthfirst search. 

For lack of space, I have picked only 3 examples. These demonstrate results 
found by running other examples. It was also round that the amount of processing needed 
in clausal cases varied greatly with the clause picked to start with. Problem 1 is the 
classical Quine-Wang problem P(x a)v(P(x f(x))r\P(f(x) x)), -P(x a)v-P(x y)~.P(y x). 
Problem 2 is a variation of 1: G(Y a)v(C(y f(y))~G(f(yI yl), -G(w y)v(G(y f(y))~C(f(y)  
y ) ~ - C ( y  a)). Problem 3 is the example of section 5. 

NON-CLA USAL CLAUSAL 
cpu time exten. deriv. cpu time exten. deriv. 

Problem 1 1.074 3 2 1.278 8 4 
Problem 2 .746 3 2 1.717 11 7 
Problem 3 11.296 65 45 28.965 136 74 

8- Conclusion 

It it may be favorable to abandon clausal form for a form easier to attach meaning 
to. This paper presents a non-c!ausal inference system that is complete at the general 
level and probably as efficiint as current clausal systems. Section 7 provides evidence 
that computational advantages expected with prenex form do in fact appear ( I  do not wish 
to argue about judging criteria here). The comparison of QUEST with SL-resolution 
shows that techniques developed for clausal systems will be applicable to prenex systems. 



REFERENCES 

1. Boyer, R.S., and Moore, J.S., The Sharing of Structure in Resolution Programs, 
Metamathematics Unit, University of Edinburgh, 1971. 

2. Hayes, P.J., and Kowalski, R.A., Lecture Notes on Automatic Theorem-proving, 
Metamathematics Unit Memo 40, University.of Edinburgh, 1971. 

3. Knuth, D.E., Fundamental Algorithms, Addison-Wesley, London, 1968. 

4. Kowalski, R.A., and Kuehner, D.G., Linear Resolution with Selection Function, 
Artificial Intellinence, 2, 1971. 

5. Nilsson, N.J., Problem Solving Methods in Artificial Intelligence, McCraw-Hill, 
New York 1971. 

6. Wilkins, D.E., QUEST: A Non-Clausal Theorem Proving System, M.Sc. Thesis, 
University of Essex, 1973. 


