
Reasoning about Locations in

Theory and Practice

Karen L. Myers David E. Wilkins

Arti�cial Intelligence Center

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

myers@ai.sri.com wilkins@ai.sri.com

415-859-4833 415-859-2057

February 7, 1997

Abstract

Locational reasoning plays an important role in many applications of AI problem-solving systems,

yet has remained a relatively unexplored area of research. This paper addresses both theoretical

and practical issues relevant to reasoning about locations. We de�ne several theories of location

designed for use in various settings, along with a sound and complete belief revision calculus for

each that maintains a STRIPS-style database of locational facts. Techniques for the e�cient oper-

ationalization of the belief revision rules in planning frameworks are presented. These techniques

were developed during application of the location theories to several large-scale planning tasks

within the SIPE{2 planning framework.

Keywords: locational reasoning, belief revision, generative planning, hierarchical task networks,

experimental AI

1 Introduction

Much progress has been made in recent years in the development of knowledge-based problem-

solving systems that can solve tasks of practical interest. Planners, reactive controllers, and sched-

ulers, for example, are being applied successfully to increasingly larger and more sophisticated prob-

lems [1, 11, 23, 34, 29]. The research contributions in these e�orts have emphasized the technologies

themselves; for example, developing generalized frameworks and more e�cient problem-solving al-

gorithms. In contrast, relatively little e�ort has been devoted to the development of well-grounded

theories for the underlying domain knowledge required by such systems. Certainly, there have

been advances in knowledge representation for numerous areas; however, work on representations

generally ignores computational issues. Principled representations of domain knowledge with good

computational properties are essential for nontrivial applications. Nevertheless, representational

theories driven by practical considerations remain under-explored for many critical topics.

This paper presents a commonsense theory for locational reasoning that is motivated by both

theoretical and practical concerns. Our approach deviates from much of the work on commonsense

theories in two ways. First, we make no attempt to provide a universal theory that covers all

eventualities (as, for example, was the motivation for Hayes' work on liquids [15]). Instead, we

de�ne a practical theory focused on those aspects of locational reasoning that are necessary and

su�cient for a broad class of meaningful applications. While a more in-depth treatment of locational

reasoning is essential for certain domains, we believe that the theory provided here is epistemically

adequate for many problems of interest. Second, we are motivated by the goal of applying our

theory within implemented problem-solving systems. For this reason, we present techniques for the

e�cient operationalization of our formal theory, with emphasis on its use in planning systems.

Our theory models a location as a point in a prede�ned space of places, which can span multiple

levels of abstraction. The locations of objects change as a result of discrete movement operations.

Objects are immutable in the sense that their basic structure does not change. However, they can

be comprised of a �nite set of prede�ned components, each of which can be moved independently.

While not universal, this model of locations is useful for a broad range of applications that require

basic reasoning about objects whose positions change over time. Examples include directed naviga-

tion for autonomous vehicles (such as mobile robots), transportation planning, military operations,

production line scheduling, and real-time tracking.

There has been no previous work to date of which we are aware on locational theories of the

sort described in this paper. In the knowledge representation community, locational reasoning is

overshadowed by the more general topic of spatial reasoning (for an overview, consult [8]; more

1

recent work is described by [4, 26, 17]). Spatial theories di�er from our locational theory in several

regards. Theories for spatial reasoning focus on topics such as the articulation and axiomization

of notions of shape, spatial occupancy, and qualitative spatial relationships (such as near and

somewhere). These concepts are beyond the scope of what is required for basic locational reasoning.

Most spatial theories lack notions inherent to our theory of locations, such as partitioning of objects

and abstraction hierarchies for locations. There have been few e�orts to incorporate reasoning about

movement in spatial settings, as noted by [28], whereas movement is integral to our theory. Finally,

work on spatial reasoning has for the most part ignored computational issues; thus, while many of

the spatial theories are expressively powerful, they are not amenable to e�cient reasoning.

There has been success in de�ning representation theories with good computational properties

for other domains of general interest. One example is the development of formalisms, semantics, and

algorithms for taxonomic reasoning systems. A second example is the work on temporal reasoning,

initally undertaken by Allen [2] but extensively developed by others in follow-on e�orts. The work

on specialist reasoners [27] has examined several domains, including time, colors, and taxonomies.

Our work provides comparable theoretical and practical foundations for the task of reasoning about

locations, with particular emphasis on applications to planning systems.

The paper begins with the presentation of a basic model of location, which is progressively

enriched to include notions such as multiple abstraction levels and aggregation. For each case we

present a formal theory and discuss the situations to which it applies. Next, we de�ne a belief

revision framework along with a provably correct set of belief revision rules for maintaining a

STRIPS-style database in accordance with the constraints of each theory.

The second half of the paper presents techniques for operationalizing the belief revision rules

in order to provide e�cient reasoning about locations. The emphasis is on planning systems,

although many of the ideas apply more generally to other problem-solving frameworks. For the

sake of concreteness, we describe these techniques in the context of a speci�c planning framework,

namely SIPE{2 (System for Interactive Planning and Execution) [31, 32, 33].1 Experimental results

are provided that show how the proposed operationalization improves e�ciency substantially over

a direct translation of the belief revision rules. The experimental results are based on problems

from two domains that make extensive use of locational reasoning, namely planning of military

operations [34], and planning the actions of a mobile robot [31].

1SIPE{2 is a trademark of SRI International.

2

2 Theories of Location

The formal theories of location are de�ned using a �rst-order language L. The vocabulary of L

contains (among others) the predicate:

AT(x; l) object x is at location l

Location variables are represented using l; l1; l2; : : : while object variables are represented using

x; y; z; x1; y1; z1; : : : We further assume the use of a predicate = (written using in�x notation for

the sake of clarity) with the standard interpretation for equality [35]. Other predicates will be

introduced as required.

To simplify the presentation, we assume that locational information is to be maintained for all

objects in our domain; in other words, it is meaningful to associate a location with all objects.2

2.1 A Basic Theory of Location

The characteristic properties of location for our basic theory are captured by the following two

constraints.

Every object has a location.

No object has more than one location.

The constraints are captured formally by the axioms

8x 9l: AT(x; l) (1)

8x 8l1 8l2: AT(x; l1) ^AT(x; l2) � l1 = l2 (2)

We refer to this pair of axioms as the basic theory of locations, written as T 0
L.

2.2 Uniqueness of Locatee

For certain classes of locations, the following constraint should be added to the basic theory:

At most one object can be at a given location.

2This assumption does not hold in general (e.g., consider abstract concepts such as numbers) but is easily relaxed.
One solution is to use a typed logic that includes a type locatable-object. Alternatively, a monadic predicate could
be de�ned whose extension consists of all objects for which locations are de�nable; all location axioms would be
relativized to objects that satisfy this introduced predicate.

3

CONTINENT
*

COUNTRY
*

STATE
*

COUNTY
*

CITY
*

NEIGHBORHOOD

Figure 1: Geopolitical Place Abstraction

The constraint is necessary when reasoning about parking spaces or seat assignments. It is also

typically adopted for blocks world problems. The constraint is not part of a general theory of

locations because it is inappropriate for locations on a large scale: for example, a city, state or

country usually contains more than one person.

Extending the basic theory to incorporate uniqueness of locatee requires the additional axiom:

8l 8x 8y: AT(x; l)^ AT(y; l) � x = y (3)

2.3 Place Abstractions

The two theories presented above assume that all locations are at the same level of speci�city. More

generally, reasoning about places must be done at multiple levels of abstraction. The geopolitical

place abstraction hierarchy depicted in Figure 1, which might be used in transportation planning,

provides an example. Similarly, the description of an o�ce building for a robot that must plan

navigational routes might contain multiple levels of abstraction, as shown in Figure 2. This second

example illustrates how multiple types of locations can share a single level of abstraction (for

example, ROOM, CORRIDOR, and JUNCTION). Multiple levels of abstraction have been shown

to be valuable in terms of more e�cient planning: for example, when planning a trip from Palo

Alto to Boston, the search can be greatly constrained by �rst deciding how to get from California

to Massachusetts rather than immediately starting to plan low-level details [16].

The following statements characterize a revision of the basic theory of locations to include place

abstractions. The �rst two statements are generalizations of the de�ning principles from the basic

theory. The third expresses the containment principle.

4

BUILDING
*

WING
*

ROOM, CORRIDOR, JUNCTION
*

POINT

Figure 2: Place Abstraction for O�ce Buildings

Every object has a location at every level of abstraction.

No object can be at more than one location within a single level of abstraction.

When an object is at a location contained within another location,

the object is also at the containing location.

Formalization of the theory of locations with multiple levels of abstraction requires the introduction

of the predicate WITHIN and function LEVEL:

WITHIN(l1; l2) location l1 is directly contained within location l2
LEVEL(l) the abstraction level of location l

By directly contained in the characterization of WITHIN(l1; l2), we mean that l1 must be at the

level of abstraction immediately below that of l2.

The requisite axioms are:

8x 8l 9l0: LEVEL(l) = LEVEL(l0) ^ AT(x; l0) (4)

8x 8l1 8l2: AT(x; l1)^ AT(x; l2) ^ l1 6= l2 � LEVEL(l1) 6= LEVEL(l2) (5)

8x 8l1 8l2: AT(x; l1) ^WITHIN(l1; l2) � AT(x; l2) (6)

We refer to the collection of axioms (4) { (6) as the theory of hierarchical locations, and denote it

by T H
L .

It is possible to dispense with the LEVEL function in the above formalization by employing

AT predicates at multiple levels of abstraction instead. For example, the geopolitical abstraction

hierarchy would require predicates AT-NEIGHBORHOOD, AT-CITY, AT-COUNTY, AT-STATE,

AT-COUNTRY, and AT-CONTINENT. Using AT{ predicates for each level of abstraction leads to

many more number of axioms: a version of axiom (5) would be required for each level, and axioms

5

in the spirit of (6) would be required to link each level with the level immediately above it in the

hierarchy. Since the original formalization is domain-independent and is also more perspicuous, we

make use of it throughout this paper. However, we do consider the computational properties of the

two alternatives in Section 6.4.4.

2.4 Aggregation

To this point, our theories of location have assumed that objects are indivisible. We now consider

an object that can be partitioned into a �nite set of discrete subobjects, each of which can be

moved independently. We call a partitionable object of this sort an aggregate. An army, whose

units may be stationed at di�erent sites, provides a good example.

To simplify the presentation, we assume that there is only a single level of abstraction for

locations throughout this subsection; the following subsection describes a theory that combines

aggregation with location abstractions.

Our theory of location for aggregates is de�ned by the following characteristics:

All non-aggregate objects have a location.

When all subparts of an object are at a location, the object is at that location.

When all subparts of an object are not co-located, the object has no location.

The �rst property states that non-partitionable objects always have a location. The second

property dictates that the location of an aggregate object is l when its components are all located

at l. The third property, which we call the co-location requirement for aggregates, is somewhat more

controversial. This property applies to many of the objects typically reasoned about in planning

domains, which motivates its inclusion here. Armies with their independent units provides one

example; cargo that must be partitioned into independently moved shipments is a second example.

We note that in contrast to other models of splitting objects [9], an aggregate in our theory continues

to exist when its subparts are not co-located; only the location of the aggregate object ceases to be

de�ned.

The co-location requirement is not universal. Consider, for example, a woodpile, whose loca-

tion would persist despite the removal of some proper subset of the logs (up to a certain point).

When modeling domains that contain aggregate objects of this type, the scope of the co-location

requirement should be restricted to exclude such objects.

The axiomatization of the aggregation properties makes use of the following predicate:

SUBPART(x1; x) x1 is an independently movable subobject of x

6

SUBPART denotes 1-step rather than transitive decomposition: while an army may be partitioned

into brigade subparts and each brigade may be further partitioned into unit subparts, units would

not be subparts of the army. We use the term ancestor/descendant to refer to the transitive closure

upward/downward of the SUBPART relation.

The axiomatic statement of the three aggregation properties is as follows:

8x (:9x1 SUBPART(x1; x)) _ 9l AT(x; l) (7)

8x l: (8x1 :SUBPART(x1; x)_ AT(x1; l)) � AT(x; l) (8)

8x x1 x2 l1 l2: AT(x1; l1) ^ AT(x2; l2) ^ l1 6= l2 ^ (9)

SUBPART(x1; x)^ SUBPART(x2; x) � :9l: AT(x; l)

The axioms (7) { (9) along with (2) comprise the theory of locations for aggregates, denoted by T A
L .

(To exclude the co-location requirement for aggregates, axiom (9) should be omitted.)

The following is a direct consequence of axioms (8) and (9):

8x x1 l: AT(x; l)^ SUBPART(x1; x) � AT(x1; l) (10)

This formula states that when an aggregate object is at a location, then so are all of its subparts.

2.5 The Full Theory

Finally, we de�ne a full theory of location that encompasses both location hierarchies and aggre-

gation. The full theory does not consist of T H
L [T A

L . In particular, the constraint (4) from T H
L

that requires all objects to have a location at each level of abstraction conicts with (9) from T A
L .

The axiom (4) is omitted, leaving the weaker existence constraints (7) and (9). In addition, the

co-location requirement for aggregates must be relativized to individual levels of abstraction:

When all subparts of an object are not co-located at a given abstraction level,

the object has no location at that abstraction level.

The axiom (9) is modi�ed as follows to correspond to this relativized principle:

8x y1 y2 l1 l2: AT(y1; l1) ^AT(y2; l2)^ LEVEL(l1) = LEVEL(l2)^ l1 6= l2 ^ (11)

SUBPART(y1; x)^ SUBPART(y2; x) � :9l: AT(x; l)^ LEVEL(l) = LEVEL(l1)

We refer to the full theory using the symbol T L.

7

3 Movement

The theories de�ned in Section 2 focus exclusively on location information for stationary objects.

In this section, we extend the theories to include the e�ects of movement.

3.1 Assumptions

As has been well-documented in the literature, formalizing action is a challenging endeavor. Com-

plexity arises in the form of the frame [20], rami�cation [10, 13], and quali�cation [19] problems. We

employ several assumptions in this paper for simplifying the task of reasoning about move actions.

First, we assume that move actions always succeed when their preconditions are satis�ed. This

assumption enables us to focus on the issues of maintaining locational information rather than the

many subtle problems that relate to execution failure [14].

Second, we assume a single, discrete move action at each time step. We note, however, that

it is straightforward to generalize our formalism to support parallel move actions provided that

the parallel actions are non-interfering; however, we refrain from doing so in order to keep the

presentation simple. By non-interfering, we mean that that the executability of one action is not

impacted by the simultaneous execution of a second action (e.g., trying to move two objects to the

same location at one time, when only one object can occupy that location). Our implementation of

the location theories using SIPE{2 operators (discussed in Section 6.3.1) supports parallelism with

this restriction. Allowing parallel move activities that can interfere raises a number of di�cult

technical and ontological problems (including the rami�cation problem) which we do not wish to

address. Many planning domains do not require the use of potentially interfering parallel move

operations. In planning military operations, for example, the movement of troops, cargo and

machinery is highly parallel but the simultaneously planned actions are non-interfering,

Finally, we do not provide movement theories that contain the uniqueness of locatee axiom (3).

The use of this axiom requires domain-speci�c information to characterize the e�ects of movement.

For certain applications (e.g., putting cars in parking spaces, seat assignments), the appropriate

behavior is for a move action to be classi�ed as unexecutable whenever the destination of the move

is not vacant. However, in domains where the movement of an action can lead to the clearing of a

target destination in a predictable manner (e.g., the object currently at the target location may get

crushed or pushed to a new location), it is necessary to customize the e�ects of movement operators

in accord with domain characteristics. Again, we wish to concentrate on issue of reasoning about

locations, not general problems in reasoning about actions.

8

3.2 Movement Theories

Our basic principles relating movement to location are:

An object will be at a given location when moved there.

Unmoved objects remain undisturbed.

Our formalization of these principles makes use of the situation calculus [20] for the �rst-order

language LM. This language generalizes L from the previous section in that it employs situation

variables s; s1; s2; : : : and replaces the predicate AT(x; l) by a uent of the form AT(x; l; s). In

addition, LM contains the action uent MOVE(x; l; s), which serves as the sole transition function

between situations.

For a single level of place abstraction, the movement-location relationship is captured by the

relocation axiom (12) and inertia axiom (13):

8x l s: AT(x; l;MOVE(x; l; s)) (12)

8x y lx ly s: AT(y; ly; s)^ x 6= y � AT(y; ly;MOVE(x; lx; s)) (13)

To accommodate aggregates, the axiom (13) must be re�ned to exclude subparts since they neces-

sarily move with their superparts:

8x x1 l1 l2 s: AT(x1; l1; s)^ x 6= x1 ^ :SUBPART(x1; x) � AT(x1; l1;MOVE(x1; l1; s)) (14)

Note that the movement of subparts with their aggregate need not be explicitly axiomatized, as

this movement is a consequence of axiom (7).

In planning domains, it is often the case that movements are speci�ed at a certain level of

abstraction without committing to particular lower-level locations. For instance, a robot may plan

to navigate to a speci�c room without identifying a speci�c coordinate pair within the room. For

this reason, we introduce the constraint of locational indeterminacy:

After moving an object at a given level of abstraction, the object could be at any location

at lower levels of abstraction that is contained within the higher-level location.

Let WITHIN-N(l1; l2) denote the relation that (l1; l2) is in the transitive closure of WITHIN. De�ne

< to be a partial order on abstraction levels such that LEVEL(l0) < LEVEL(l1) when l0 is at a

lower level of abstraction than l1. The constraint of locational indeterminacy can be expressed as

follows:

9

8x y l l0 s: LEVEL(l0) < LEVEL(l) � (15)

9l1 LEVEL(l1) = LEVEL(l0) ^ WITHIN-N(l1; l)^ AT(x; l1;MOVE(x; l; s))

This axiom states that for every location l0 whose abstraction level is below that of the location to

which an object was moved, there is some location at the same level as l0 where the object resides.

As was the case with aggregates, there is no need for a corresponding `upward' axiom to account

for the position of encompassing locations higher in the abstraction hierarchy; these changes are

covered by the location axiom (5).

To complement the theories of location de�ned above, we de�ne four separate theories of move-

ment. The basic theory of movement, denoted by T 0
M , consists of a situationalized version of

T 0
L plus (12) and (13).3 The theory of movement for aggregates, denoted by T A

M , consists of a

situationalized version of T A
L with (12) and (14). The theory of movement for hierarchical loca-

tions consists of a situationalized version of T H
L along with (12), (13) and (15). The full theory of

movement, denoted by T M , consists of a situationalized version of T L along with (12), (14), and

(15).

It is interesting to note that we have formalized our theories of movement compactly in a

�rst-order language, without recourse to any of the complex nonmonotonic reasoning schemes

often deemed essential for reasoning about action. While it is true that one can readily construct

situations that lie beyond the scope of the theories presented here, our experiences in the domains

of robot navigation and military operations planning indicate that the basic theories su�ce for

many practical problems.

4 Belief Revision

We now present a syntax for belief revision rules that can be used to maintain a STRIPS-style

database of unnegated propositional facts. In the following section, we provide sets of belief revision

rules within this framework that operationalize the theories of location presented above.

Our belief revision framework supports both the addition and retraction of facts, initiated by

either operators (in the case of a planner) or sensors (in the case of a situated reactive system). We

have chosen to use a belief revision calculus for describing our treatment of locational reasoning

rather than a speci�c planning formalism since the ideas apply to the more general case.

3By situationalized, we mean that instances of the 2-ary predicate AT(x; l) has been replaced by the uent
version AT(x; l; s) and universally quanti�ed situation variables have been introduced, as appropriate. For example,
8s x 9l: AT(x; l; s) constitutes a situationized version of (1).

10

4.1 Belief Revision Framework

Belief revision rules (or BR-rules) are de�ned as follows. Let VARS(fL1; : : : ; Lkg) denote the set

of variables appearing in the literals L1; : : : ; Lk.

De�nition 1 (Belief Revision Rules) Belief revision rules have the form:

P1; : : : Pk ; T
+ ! A1

+; : : : Am
+; R1

�; : : : Rn
� (Insertion Rule)

P1; : : : Pk ; T
� ! A1

+; : : : Am
+; R1

�; : : : Rn
� (Retraction Rule)

where m;n; k � 0 and T ,Pi,Ai,Ri are positive literals and

VARS(fP1; : : : Pk ; A1; : : : ; Am; R1; : : : ; Rng � VARS(fTg) :

T is referred to as the trigger fact, being positive for the insertion and negative for the retraction

rule. The Pi are called the gating conditions for the rules.

Explanation of the intended semantics of a BR-rule requires some notation for substitutions

and uni�cation. We write L : � to denote the literal L under substitution �, and fL1; : : : ; Lkg : �

to denote the set fL1 : �; : : : ; Lk : �g. The notation � : � denotes the instantiation of a BR-rule

for the substitution �.

BR-rules are intended to be used to modify a database in response to the speci�cation of a

ground literal serving as an update. The operational semantics for the insertion rule is as follows:

if S is a positive ground literal that matches trigger T for the substitution � (i.e., S = T : �),

then when S is added to a database containing (among others) the literals P1 : �; : : : Pk : �,

the literals in fA1 : �; : : : Am : �g (referred to as the add list) should be added and the literals

fR1 : �; : : : Rn : �g (referred to as the delete list) removed. For the retraction rule, when a

ground literal S that matches T for a substitution � is removed from a database containing literals

P1 : �; : : : Pk : �, the literals A1 : �; : : : Am : � should be added and the literals R1 : �; : : : Rn : �

removed. The constraint on VARS(fTg) in De�nition 1 ensures that for any substitution � for

which S = T : �, all variables in a BR-rule are bound by �.

This behavior is captured by the following de�nitions for applicability and execution of be-

lief revision rules. All updates are assumed to be positive ground literals, with the notation S+

indicating the addition of the literal S, and S� indicating the removal of S.

De�nition 2 (BR-rule Applicability) Let D be a propositional database and S be a positive

ground literal. An insertion rule

P1; : : : Pk ; T
+ ! A1

+; : : : Am
+; R1

�; : : : Rn
�

11

is applicable for an update S+ when S 62 D, S = T : � for some substitution �, and fP1; : : : Pkg :

� � D. A retraction rule

P1; : : : Pk ; T
� ! A1

+; : : : Am
+; R1

�; : : : Rn
�

is applicable for update S� when S 2 D, S = T : � for some substitution �, and fP1; : : : Pkg :

� � D. We denote the set of instantiated BR-rules that apply for an update U by APPLIES(U;R).

The e�ects for an instantiated BR-rule � : � are denoted by EFFECTS(�; �) and de�ned to be the

list [A1
+ : �; : : : Am

+ : �; R1
� : �; : : : Rn

��].

Execution of a set of BR-rules for a given update proceeds in breadth-�rst fashion: the update

is �rst applied to the database, and then the updates in the e�ects of the applicable rules for

the update are in turn processed. This cycle repeats until no further updates apply. the formal

de�nition of BR-rule execution below makes use of the following list notation: [U ;U] denotes a

list of updates whose head is U and tail U , [] denotes the empty list, and the operators + and
P

represent list concatenation.

De�nition 3 (BR-rule Execution) Let R be a collection of BR-rules, D be a propositional

database, U a list of updates, and S a ground proposition. BR-rule execution for D, R, and U

is denoted by D
 U and de�ned as follows:

D
 [] = D

D
 [S+ ; U] = (D [fSg)
 (U +
X

�:�2APPLIES(T+;R)

EFFECTS(� : �))

D
 [S� ; U] = (D � fSg)
 (U +
X

�:�2APPLIES(T�;R)

EFFECTS(� : �))

We adopt the shorthand D
 U when referring to execution of BR-rules for a singleton up-

date U . Note that given the restrictions that all updates are ground literals, and that that

VARS(fP1; : : : Pk ; A1; : : : ; Am; R1; : : : ; Rng � VARS(fTg) holds for BR-rules (as noted in De�-

nition 1), it is straightforward to show that application of a BR-rule maps a database of ground

literals to a new database that also contains only ground literals.

In the above de�nition, the summation of the e�ects for applicable BR-rules assigns an arbitrary

order. In general, the sequencing of updates is not commutative. For the collections of BR-rules

considered in this paper, however, the order is irrelevant.

12

4.2 Properties of BR-Systems

We are interested in de�ning a system of BR-rules that `correctly implements' our theories of

location and movement. In particular, each database generated by the BR-framework should

correspond to an individual situation as modeled by the situation theory. In this section, we de�ne

the two properties that are important for validation purposes: soundness and completeness with

respect to a situation theory.

The BR-framework is useful for modeling what we refer to as Markov theories of the situation

calculus. Any uent in a Markov theory is either a literal, or an axiom of the form

B1[s] : : :Bn[s] � C1[s
0] : : :Cn[s

0]

where s0 is the successor state of s. Thus, a Markov theory permits axioms such as (13), which

links a state to its (unique) successor, but not

8y s: ONLIGHT(y; s) � ONLIGHT(y;TOGGLE(y;TOGGLE(y; s)))

which refers to a state more than one action distant. The Markov property is relevant for our

purposes because the BR-framework maps a database and update to a single successor database.

We restrict attention to Markov theories of the situation calculus throughout this document.

To establish that a given BR-system R correctly implements a Markov situation theory, it is

necessary to de�ne the correspondences between the theory and the databases generated by R.

A database represents a single state of the world and does not contain situational information;

however, situational information is explicit in the uents of the situation calculus. For uents,

we assume that the situational variables are always the last argument to a predicate or function

(for example, AT(x; y; s)), and that there is a corresponding situationless predicate or function

in the language of the BR-system (for example, AT(x; y)). To connect this pair, we introduce

the operator Sitn that maps a situation-free predicate or function expression �(t1; : : : ; tk) to a

corresponding uent; that is,

Sitn(�(t1; : : : ; tk); s) = �(t1; : : : ; tk; s) :

We also employ S to situationalize a set of predicates whose predicate symbols are drawn from

some set B:

S(�;B; s) = fP (t1; : : : ; tk; s) j P (t1; : : : ; tk) 2 � and P 2 Bg :

For simplicity, we assume that the vocabularies of R and the theory are identical, except for the

uents of the situation theory and their situationless counterparts in R. We use the symbol Q to

13

denote the set of predicate symbols used to de�ne the uents and their R counterparts. For our

theories of location, Q contains only the symbol AT. As a slight abuse of terminology, we will refer

to the set Q as the uents used in a particular theory built from LM.

The operator Sitn can be used to relate the semantics of individual databases generated by a

BR-system with the corresponding situation theory. In particular, the semantics of a given database

D used to model some speci�c situation for a situational theory T is characterized as:

T [S(D; Q; s0)

where s0 is an introduced situation constant. The transition from one situation to another by means

of an action in the situation calculus is modeled by the execution of an update in the BR-framework

that adds or retracts propositions to the database corresponding to the direct e�ects of the action.

Thus, each action in the situation theory necessarily maps to a set of updates. We let the function

F denote this map and represent the state that results from execution of an action A in a situation

s by A(s).

Soundness and completeness mean that the belief rule system does the `right thing' for a given

theory in that it causes all (by completeness) and only all (by soundness) uent consequences of the

situation theory to be represented by their corresponding nonuent projections in the database. To

formalize these concepts, we �rst introduce the notions of relative consistency and relative closure

for a database with respect to a theory.

De�nition 4 (Relative Consistency) Let T be a theory with uents Q. A database D is con-

sistent relative to T for Q i� for any introduced situation s0 not in T the collection of formulas

T [S(D; Q; s0)

is consistent.

De�nition 5 (Relative Closure) Let T be a theory with uents Q. A database D is closed

relative to T for Q i� for any introduced situation s0 not in T , when

T [S(D; Q; s0) j= S(p(t1; : : : ; tk); s0)

for p 2 Q then p(t1; : : : ; tk) 2 D.

The combination of relative consistency and relative closure ensure that a database corresponds

to a correct characterization of the uents (relative to Q) in a possible situation. Using these

concepts, soundness and completeness are de�ned as follows.

14

De�nition 6 (Soundness of a Belief Rule System) Let T be a theory with uents Q and let

F be an action map. A belief rule system R is sound with respect to T , Q, and F i� for every

database D that is closed and consistent relative to T for Q, when p(t1; : : : ; tk) 2 D
F(A) for an

action A then for any introduced situation s0

T [S(D; Q; s0) j= Sitn(p(t1; : : : ; tk); A(s0)) :

De�nition 7 (Completeness of a Belief Rule System) Let T be a theory with uents Q and

let F be an action map. A belief rule system R is complete with respect to T , Q, and F i� for

every database D that is closed and consistent relative to T for Q, when

T [S(D; Q; s0) j= Sitn(p(t1; : : : ; tk); A(s0))

for action A, introduced situation s0, and p 2 Q, then p(t1; : : : ; tk) 2 D
 F(A).

4.3 Implementing BR-Rules

The belief revision rules can be translated directly into SIPE{2 deductive operators for use in

planning applications. We describe one translation in subsection 6.3.3. Translations to planning

operators in other frameworks are feasible, provided that the operators have some kind of fact-

invoked or event-based capability to implement the triggers in BR-rules.

BR-rules are also useful in other classes of problem-solving systems. For instance, the rules

can be used by a reactive execution system that operates in dynamic environments to maintain a

database of facts that model the current state of the world. Once such system is the Procedural

Reasoning System (PRS) [12].4 The belief revision rules de�ned above are directly translatable

to PRS knowledge areas (called KAs), which correspond to operator representations in traditional

planning systems. We have used KA translations of the BR-rules for locational reasoning presented

in the following section, as part of a reactive system designed to execute military deployment plans.

5 Reasoning about Locations and Movement

We now de�ne sets of belief revision rules that operationalize the locational theories from Section 3.

Each set of rules is proven sound and complete for its respective theory, relative to the uent

AT(x; l; s) and an action map Fm that translates instances of the uent MOVE(x; l; s) to the

corresponding update AT(x; l)+. All proofs can be found in the Appendix.

4PRS is a trademark of SRI International.

15

The Basic Case

The basic theory T 0
M is captured by the single rule:

AT(x; l1); AT(x; l2)
+ ! AT(x; l1)

� (16)

We use the notation R0 to denote the singleton set containing the rule (16). The following propo-

sition validates the correctness of R0 for implementing T 0
M .

Proposition 1 The BR-system R0 is sound and complete with respect to the theory T 0
M for the

uent AT(x; l; s) and action map Fm.

Place Abstractions

We de�ne RH , the set of BR-rules for the theory of hierarchical locations T H
M , to be the following

three rules:

AT(x; l1); LEVEL(l1) = LEVEL(l2); AT(x; l2)
+ ! AT(x; l1)

� (17)

WITHIN(l1; l2); AT(x; l1)
+ ! AT(x; l2)

+ (18)

WITHIN(l1; l2); AT(x; l2)
� ! AT(x; l1)

� (19)

We refer to any collection of axioms de�ned in terms of the predicates WITHIN and LEVEL that

describes an individual place abstraction tree as an abstraction theory. The correctness of RH for

implementing T H
M is established by the following result.

Proposition 2 Let H be an abstraction theory. The BR-system RH is sound and complete with

respect to the theory T H
M [H for uent AT(x; l; s) and action map Fm.

Aggregate Objects

Reasoning about the movement of aggregate objects requires the rule (16) de�ned for the basic

theory. In addition, the following rule handles the basic movement of an aggregate's subparts:

SUBPART(x1; x); AT(x; l)
+ ! AT(x1; l)

+ (20)

Splitting of aggregates is captured by the rule:

SUBPART(x1; x); AT(x; l); AT(x1; l)
� ! AT(x; l)� (21)

16

Joins are somewhat more complex. For each aggregate with k subparts, a collection of k rules is

required to cover all possible joins (i.e., each subpart could be moved to complete the join). Below

is a schema for an individual aggregate, where the predicate UNAk(x1; : : :xk) denotes a unique

names constraint on its arguments: that is, each xi is bound to a term that denotes a distinct

object.

SUBPART(x1; x) ;AT(x1; l); : : : ; (22)

SUBPART(xk�1; x); AT(xk�1; l); UNAk(x1; : : :xk);

SUBPART(xk; x); AT(xk; l)
+ ! AT(x; l)+

We de�ne RA to be the collection of rules (16) { (21) along with the instantiations of the schema

(22). For applications where the co-location requirement for aggregates is not appropriate, (21)

and (22) should be omitted.

We refer to any collection of axioms based on the predicate SUBPART that describes an in-

dividual aggregation hierarchy and contains appropriate unique names axioms as an aggregation

theory. The correctness of RA for implementing T A
M is assured by the following result.

Proposition 3 Let A be an aggregation theory. The BR-system RA is sound and complete with

respect to the theory T A
M [A for the uent AT(x; l; s) and action map Fm.

The Full Theory

De�ne the BR-system R� to consist of the BR-rules (17) { (19) along with (20), (21) and the

instantiated schemas of (22). The rules in R� correspond to the combination of the BR-rules for

place abstractions and aggregate objects, omitting rule (16) from RA. The omitted rule served to

remove all previous AT facts for an object when a new AT fact is added to the database. The rule

is too strong when multiple levels of place abstractions are used. Instead, the rule (17) provides

the removal of previous AT facts at the same level of abstraction as the update.

Proposition 4 Let H be an abstraction theory and A be an aggregation theory. The BR-system

R� is sound and complete with respect to the theory T M [H [A for the uent AT(x; l; s) and

action map Fm.

It is important to note that the soundness and completeness results are relative to fAT(x; l; s)g,

not fAT(x; l; s);:AT(x; l; s)g. In general, there will be a large number of negated AT propositions

that hold for a given situation; thus, it is impractical to expect that the database contain all such

negated facts. The closed-world assumption

17

Assume :AT(A;L) when AT(A;L) is not in the database.

can be used to obtain appropriate negative instances of the predicate AT, but only when there is

a single level of abstraction.

Applying the full closed-world assumption when there are multiple levels of abstraction leads

to problems. The source of the di�culties is the possibility of moving objects at high levels of

abstraction without specifying speci�c locations at lower levels, as was the case with the example

of planning to move a robot to a new room without specifying a speci�c coordinate within that

room. After such a planned move, there would be no explicit location available for the robot at the

coordinate level. The full closed-world assumption would thus allow the unwarranted conclusion

of :AT(robot; l) for every coordinate l. For multiple levels of abstraction, the following relativized

version of the assumption must be used:

Assume :AT(A;L) for any location L whose abstraction level is at or above

that of a location L0 for which AT(A;L0) is in the database.

6 Practical Issues

To this point, we have de�ned a collection of formal theories of location and movement, and

presented classes of belief revision rules that correctly implement those theories. However, direct

implementations of these rules can be ine�cient for large-scale applications. This section describes

implementation techniques that enable more e�cient reasoning about locations, and experimental

results that validate the e�ectiveness of these techniques for reducing solution times in practice.

Our focus is on implementation techniques for planning systems, although many of the ideas

apply more generally to other classes of problem-solvers. More speci�cally, we are interested in

deducing situation-dependent locational facts in world states determined by a partial-order plan

that contains planning variables with constraints. The computational problems of reasoning about

locations are particularly severe in planning systems that generate partial-order plans (determining

whether a given predicates holds in a world-state of a plan is NP-hard in the worst case [6]), yet

such plans are often required for interesting problems. Furthermore, in least-commitment planners,

a planning variable that represents a location may have a complex set of constraints that can make

unifying location variables expensive.

Although one could de�ne a specialized subsystem to keep track of locational information, our

goal is to work within the paradigm of planning itself. In particular, we wish to have locational

reasoning performed by the component of the planner that reasons about the e�ects of actions. Our

18

model assumes a set of deductive rules that encode both direct and indirect e�ects of actions on

locations, along with a general-purpose reasoning engine for deducing information about locations

and revising deductions in response to new information. Locational reasoning in this framework

amounts to performing deductions and retractions for locational predicates in individual world-

states of a plan, in response to changes precipitated by planning operations (such as the introduction

of an action with speci�ed e�ects).

SIPE{2, a hierarchical task network (HTN) style planning system, is used to illustrate the imple-

mentation techniques. However, the techniques are not speci�c to SIPE{2 or HTN planning; they

apply to any partial-order, least-commitment planner with su�ciently powerful deductive capabil-

ities. SIPE{2 is also used for the experimental evaluation of the methods. Several characteristics

make SIPE{2 a good planning system for evaluating the locational reasoning techniques. It is one of

the few AI planning systems that can solve large, realistic problems, and the techniques described

here contribute signi�cantly to that ability. SIPE{2 was developed with heuristic adequacy as a

high priority, and has been employed by numerous users to solve a range of interesting problems

over a twelve-year period. Example applications include planning the movement of aircraft on a

carrier deck, travel planning, construction tasks, and the problem of producing products from raw

materials on process lines under production and resource constraints, robot navigation and military

operations. During those e�orts, the system has been re�ned to make it highly e�cient. Thus,

demonstrating that a particular technique can improve plan generation time by a nontrivial amount

for a given problem is signi�cant.

Section 6.1 describes interactions between locational reasoning and planning. Section 6.2 sum-

marizes the problems used in our experiments. Section 6.3 presents a brief overview of the SIPE{2

representation of domain knowledge along with a systematic method for translating BR-rules into

this representation. Finally, Section 6.4 presents the improved implementation techniques along

with the experimental results that illustrate their e�ectiveness.

6.1 Locational Reasoning During Planning

As noted above, we want to use the deductive machinery within the planner itself to perform

locational reasoning, rather than de�ning a specialized locational reasoning system. One key reason

for doing so is to enable modeling of complex interactions between locational and non-locational

predicates, which would be di�cult to support with a distinct module for locational reasoning [22].

The location of an object at a given state in an evolving plan can be impacted by various

operations of the planner. One such operation is the insertion of a new goal or action into a plan.

In particular, the goal or action may directly change the location of an object (e.g., a MOVE

19

Problem # Actions # Abstraction Levels

Robot 12 2
Robot-with-1 12 2
Robot-with-5 12 2
Mil-Small-1+ 47 1 { 2
Mil-Small-4 47 4
Mil-Big-1+ 188 1 { 2
Mil-Big-4 188 4

Table 1: Charcteristics of Plans used for Experimentation

action). Furthermore, for any world state in the plan that is ordered after the new action, all

location facts must be rededuced because the new action may invalidate assumptions that were

made during conclusions previously drawn from locational reasoning. For example, if an action is

added at the beginning of a plan to have a robot pick up a key, then all subsequent actions that

move the robot should also change the location of the key. The addition of an ordering constraint

between two actions requires similar recalculation of locations in later actions (i.e., the ordering

constraint can be viewed as resulting in the insertion of certain actions before others).

Instantiation of a planning variable can also force recalculation of locations for dependent ac-

tions. For example, suppose the plan speci�es that a robot will pick up an as of yet undetermined

object. Once the object is bound to, say a speci�c key, the new location of the key must be re-

ected in all actions and world-states in which the robot moved while continuing to hold this object.

Furthermore, there may be additional key-speci�c deductions that should now be triggered.

6.2 Experimentation Domains

We have evaluated our techniques for implementing locational reasoning by generating plans for

two domains: mobile robot navigation [31] and military operations [34]. This section summarizes

the characteristics of these domains that are relevant to the experimental evaluation. A listing of

the problems is provided in Table 1, which is further explained below.

The robot problem involves generating a plan for a robot to retrieve objects from one room and

deliver them to another room. Thus, both the robot and objects that it might grasp can change

their locations. Two levels of abstraction for locations are used: the planner �rst plans to move

objects from one room to another, then re�nes this plan to include moves between grid locations

within each room. The generated plan (referred to as Robot) contains 12 primitive actions, 10

of which involve changes of location (e.g., robot movement, object grasping). Certain primitive

actions (e.g., opening a door) do not a�ect the location of any object.

20

For actions that involve movement of the robot, the planner must correctly deduce that both

the robot and any objects it is carrying are at the new location (and not at the old location).

These deductions must be done for both abstraction levels (rooms and grid locations). In addition,

our implementation deduces for each moved object the set of objects to which it is adjacent, thus

further stressing location reasoning.

In addition to Robot, two other plans are used for evaluation, namely Robot-with-1 and Robot-

with-5. They involve the same basic task but are extended so that the robot holds 1 or 5 additional

objects, respectively. These objects change location whenever the robot moves, thus invoking

additional locational reasoning. While the robot planning problems are not large, they are beyond

the capabilities of many current AI planning systems.

The problems from the military domain involve generating employment plans for countering

speci�c enemy courses of action, and expanding deployment plans for moving the relevant combat

forces, supporting forces, and their equipment and supplies to their target destinations in time for

the successful completion of a mission. Four levels of abstraction for locations are used; in increasing

order, they are place, sector, region, and territory. The domain contains approximately 100 planning

operators to encode relevant military actions. There are approximately 500 objects/individuals

with 15-20 properties per object. About 300 of the domain objects can change location, while the

remaining objects are the locations themselves. Over 2200 predicates are used to model the initial

world and persistent domain constraints. Planning variables that represent locations or forces can

have many possible instantiations and constraints (e.g., a location variable may have constraints

on terrain type, capacity of airport, runway length, transit approval, nearness to another location,

etc.).

Two basic problems were used from the military domain for the experiments, representing sce-

narios of di�ering scope (in terms of degrees of enemy threat) for the employment/deployment

planning process described above. The smaller problem (referred to as Mil-Small-1+) results in a

plan with 47 actions, 45 of which lead to changes of location for troops and equipment. Counting

non-action nodes (e.g., nodes that encode plan assumptions and rationale as needed for plan mod-

i�cation), the �nal plan network contains 95 total nodes and 15 parallel branchings. The larger

problem (referred to as Mil-Big-1+) is similar but involves the deployment of additional forces. It

results in a plan containing 188 actions, 169 of which lead to changes in location. There are 381

total nodes in the �nal plan network and 72 parallel branchings. These plans are highly parallel,

with up to 17 simultaneous activities.

The military problems can be solved using only the two lowest abstraction levels in the domain,

place and sector (e.g., no region or territory level operations are required). Furthermore, only limited

21

reasoning about the sector level is required (for about a third of the actions). In order to test the

e�ects of the number of abstraction levels on our locational reasoning techniques, we considered

two versions of Mil-Small-1+ and Mil-Big-1+. The Mil-Small-1+ and Mil-Big-1+ versions use the

minimal 1 { 2 abstraction levels required to solve the problems while the Mil-Small-4 and Mil-

Big-4 versions employ complete locational reasoning for all four abstraction levels. (We eliminated

higher-level locational reasoning in the Mil-Small-1+ and Mil-Big-1+ problems by removing from

the domain those predicates that specify containment relationships between location levels that

were unnecessary for solving the problems.)

6.3 Overview of SIPE-2

Some knowledge of SIPE{2 is necessary to understand the implementation techniques presented

in this section. SIPE{2 is a domain-independent, Hierarchical Task Network (HTN) style partial-

order planning system. It provides a formalism for describing actions as operators and utilizes

knowledge encoded in this formalism to generate plans for achieving goals. Given an arbitrary

initial situation and initial task network expressed as a partially-ordered set of goals, the system

either automatically or under interactive control repeatedly expands and re�nes a plan, generating

a novel sequence of actions that responds precisely to the situation at hand.

Each plan expansion is done by applying appropriate operators, which add new actions to the

plan. At �rst the new actions are abstract, but eventually directly executable actions are added for

every plan step. After some amount of plan expansion, SIPE{2 runs planning algorithms that detect

problems (e.g., two parallel actions that interfere with each other). These problems are corrected

by plan re�nements that do not add new actions, but may order actions, instantiate actions, or

remove actions and replace them by the goal they were intended to solve.

SIPE{2's formalism supports reasoning about resources, the posting of constraints on planning

variables, and the description of a deductive causal theory to represent and reason about the e�ects

of actions in di�erent world states. This last capability is of particular importance in this paper

since our theories of locations are implemented as causal theories in the planner. The causal theories

are applied every time new actions are inserted, both to the new actions and to any actions following

them. In addition, the causal theories often need to be applied to a portion of the plan after plan

re�nements that correct detected problems.

The following subsections describe SIPE{2 operators and deductive rules, and provide a domain-

independent translation of BR-rules into them.

22

Operator: Deploy-airforce
Purpose: (deployed airforce1 air�eld2 end-time1)
Precondition: (at airforce1 location1)

(near air�eld1 location1) (near seaport1 location1)
(partition-force airforce1 cargobyair1 cargobysea1)
(transit-approval air�eld2)(transit-approval seaport2)
(near seaport2 air�eld2)
(route-aloc air�eld1 air�eld2 air-loc1)
(route-sloc seaport1 seaport2 sea-loc1)

Plot:
Process

Action: split-aggregate
E�ects: (not (at airforce1 location1))

(at cargobyair1 location1) (at cargobysea1 location1)
Parallel

Branch 1:
Goal: (at cargobyair1 air�eld1)
Goal: (at cargobyair1 air�eld2)

Branch 2:
Goal: (at cargobysea1 seaport1)
Goal: (at cargobysea1 seaport2)
Goal: (at cargobysea1 air�eld2)

End Parallel
Process

Action: join-aggregate
E�ects: (at airforce1 air�eld2)
(not (at cargobyair1 air�eld2)) (not (at cargobysea1 air�eld2))

End Plot End Operator

Figure 3: SIPE{2 Operator for Deploying an Air Force

6.3.1 SIPE-2 Operators

Operators are used to represent the actions that the system can perform in a given domain, at

varying levels of abstraction. The primary representational task of an operator is to describe how

the world changes as a direct consequence of executing the action that it represents. Many of these

e�ects are not explicitly listed in the operators from which the plan was produced, but are deduced

during plan generation, as described in Section 6.3.2. SIPE{2 makes the assumption that the world

stays the same except for the e�ects associated with each action in its representation of the plan.

Features of operators relevant to locational reasoning will be described while discussing the

operator Deploy-airforce in Figure 3. This operator represents the action of deploying the cargo of

an airforce unit to a particular air�eld. It describes the movement of an aggregate object (using

a technique discussed in Section 6.4.3) through several locations in a partially ordered subplan,

contains e�ects that trigger the deductive location rules, and introduces variables for locations that

will accumulate constraints.

23

The purpose of an operator denotes the goals to which the operator can be applied. The

precondition must be true in the world state before the operator can be applied. The precondition

in Figure 3 requires the initial position of the air force to be known, and introduces variables for

intermediate seaports and air�elds with transit approval that are on known routes to the destination.

These variables contain constraints (e.g., air�eld2 must have transit approval), and may therefore

a�ect locational reasoning.

The plot of an operator provides a partially ordered sequence of actions and goals for performing

the higher-level action represented by the operator. Applying an operator involves using its plot

as a template for generating nodes to insert in the plan. In Figure 3, the plot consists of moving

an aggregate object | the airforce is split into subparts which are moved in parallel by air and

by sea (via intermediate locations) to the destination and �nally aggregated when they have all

reached the destination. Plots can contain both goal nodes, which require a certain predicate to

be achieved, and process nodes, which require a speci�c operator or primitive action to be applied.

For the example operator, the plot uses process nodes for splitting and aggregating the airforce,

and uses goal nodes to achieve changes in the locations of the subparts.

6.3.2 SIPE-2 Deductive Rules

In SIPE{2, a deductive causal theory of the domain is used to infer context-dependent e�ects of

actions from the e�ects explicitly listed with the action. The explicitly listed e�ects apply to every

situation in which the operator might be used, while the deduced e�ects may be conditioned on

the situation. In nontrivial applications, the deductive causal theory is used to represent many of

the e�ects of actions, including most of the locational e�ects. In the example operator of Figure 3,

the e�ects of moving a subpart to a new location will be deduced by the causal theory from the

AT goal predicates. In particular, the deduced e�ects will include the fact that the unit is not at

its previous location and its location at other abstraction levels has changed.

The deductive causal theory consists of deductive rules, which are similar to operators with

no plot. A sample deductive rule is shown in Figure 4. Deductive rules allow the speci�cation of

domain constraints within a world state, as well as permitting access to the previous world state.

Operators that encode the former are called state rules, while rules that allow the latter are called

causal rules. By accessing both the current and previous world states, the system can react to

changes between two states, thus permitting e�ects concerning what happened during an action to

be deduced even though these e�ects might not be implied by the �nal world state.

To access both the previous and current world states, causal rules have both a precondition and

a condition. The condition is matched in the world state after the action, while the precondition

24

is matched in the world state before the action. Thus, state rules may have a condition but not a

precondition, while causal rules may have both. Two other slots are needed on a deductive rule:

trigger and e�ects. A deductive rule is applied whenever an action being inserted in a plan has an

e�ect that matches the predicate in the trigger. The addition of deduced e�ects to an action also

triggers deductive rules. If the precondition and condition of a triggered rule are both satis�ed,

then the e�ects of the rule are added as deduced e�ects of the action.

The ability to deduce context-dependent e�ects of an action increases modularity and eliminates

unnecessary duplication, since the deductive knowledge is consolidated in one place (as opposed to

scattering this knowledge throughout many operators). Deducing e�ects can also reduce greatly

the number of operators required to model a domain. Without this ability, there must be a distinct

version of an operator for every possible set of context-dependent e�ects that the action modeled

by the operator can have (depending on the situation in which it is applied). For example, let us

consider a robot that can carry a maximum of N objects. With deduced e�ects, one move operator

su�ces and the locations of all carried objects can be deduced. Without deduced e�ects, N + 1

move operators would be needed: one for moving with no objects, one for moving with one object,

etc. As more complex domains are represented, it is critical to deduce e�ects that are conditional

on the current situation.

Most AI planners, including O-Plan2 [30], the SNLP-based planners [18] and TWEAK [7], do

not deduce context-dependent e�ects. SIPE{2, Pednault's ADL [24], and UCPOP [25] (which is

based on ADL) are exceptions. Pednault provides a good description of the complexity of deduc-

ing situation-dependent e�ects in a partial-order planning system [24], and concludes by stating,

\Further research is needed to determine the restrictions necessary to produce reasonable levels

of performance for applications of interest." Here, we present techniques that produce reasonable

levels of performance for applications that involve locational reasoning.

6.3.3 Translating BR-Rules into SIPE-2 Deductive Rules

The belief revision rules from Section 4 can be translated directly into SIPE{2 causal rules. The

gating conditions P1; : : : ; Pk translate to the precondition slot, the triggers translate to the trigger

slot, the add list translates to the e�ects slot while the delete list is negated and added to the

e�ects slot. The only exception to the above translation arises with equality predicates, which are

treated as constraints in SIPE{2. Thus, equality predicates in the gating conditions are translated

to constraints on members of the arguments slot.

As an example, the BR-rule

AT(robot1; region1); region1 6= region2; AT(robot1; region2)
+ ! AT(robot1; region1)

�

25

Causal-Rule: Move-Robot
Arguments: robot1, region2, region1 is not region2
Trigger: (at robot1 region2)
Precondition: (at robot1 region1)
E�ects: :(at robot1 region1)

Figure 4: SIPE{2 causal rule for removing outdated AT facts

translates to the SIPE{2 causal rule shown in Figure 4.

Translated SIPE{2 rules di�er from the original BR-rules in that they add explicit negated AT

facts while the BR-rules simply retract AT facts that no longer hold. The SIPE{2 rules preserve

the same positive AT facts as the BR-rules though, as required for the soundness and completeness

results of Section 5.

This translation provides a generic, domain-independent compilation of the belief revision rules

into SIPE{2 deductive rules. Specialized translations, some of which make use of domain-speci�c

constraints, can produce operators with markedly improved computational properties. Examples of

such specialized translations for the belief rules de�ned for reasoning about locations are discussed

in the following section.

6.4 Improving Computational E�ciency

Experience in applying SIPE{2 to a number of di�erent applications has revealed that a direct

implementation of the belief revision rules for locational reasoning is ine�cient. This observation

prompted the development of several techniques that signi�cantly increased the e�ciency of rea-

soning about locations during planning. We summarize these techniques into four lessons on the

topics of (1) functional facts and universal variables, (2) instantiating variables, (3) reasoning about

aggregates, and (4) abstraction levels.

6.4.1 Lesson 1: Functional Predicates and Universal Variables

In the basic and aggregate theories, T 0
M and T A

M , an object can have at most one location per

situation. When there are multiple abstraction levels for locations, an object can have at most one

location for a given level of abstraction. The BR-rules described above maintain these constraints

by explicitly removing prior AT facts for an object when a new AT fact is added. For example, the

causal rule in Figure 4 ensures that a given object has at most one location at the abstraction level

region.

The precondition in the causal rule of Figure 4 requires determination of the previous location

26

of an object. As noted above, determining such facts for partial-order plans is NP-hard. Thus,

such rules can contribute greatly to reasoning time for a planner. Signi�cant e�ciency gains can

be made by taking advantage of the fact that locations are functional with respect to an object,

i.e., at any given time, an object can be at only one location for a given abstraction level. More

generally, a predicate is said to be functional in some subset of its arguments if there is only one

set of bindings for the remaining arguments for which the predicate is satis�ed. For example,

suppose the predicate READING(gauge32 12:00 11) represents the fact that pressure gauge 32 had

a reading of 11 at noon. The READING predicate is functional in its �rst two arguments | given

the gauge and the time, there is exactly one pressure reading.

Functional predicates have been used in other problem-solving systems (as described at the end

of this section) for reasoning about many kinds of knowledge. Here, we describe why they are of

particular importance to reasoning about locations in planning systems, and present experimental

data that quantify the e�ciency gains.

Analysis The use of functional predicates for reasoning about locations provides three signi�cant

advantages in planning systems: (1) deduction of the e�ects of movement actions is more e�cient,

(2) planning algorithms that use these deduced e�ects are more e�cient, and (3) the encoding of

domain knowledge is simpler. These advantages are described briey here.

When the functionality property for locations is not exploited, the planner must explicitly

record the fact that an object is no longer at its previous location after a move operation at

that level of abstraction or above. When functionality is exploited, the object can only be at the

location mentioned in the functional predicate. Thus while deducing e�ects, the prior location of

a moved object does not have to be determined (as is done by the precondition of the causal rule

in Figure 4). This approach saves N NP-hard queries for every move of an object, where N is the

number of abstraction levels for locations.

The functionality property provides computational bene�ts to other portions of the planning

process. Since planners reason about many possible future world states, they generally represent a

new state as a set of additive e�ects that incrementally change the previous state. An algorithm,

which we refer to as the truth criterion, is used to determine whether a particular predicate is true in

a state given a partially ordered set of such e�ects. Many components of a planning system invoke

the truth criterion to determine whether a predicate holds (e.g., to determine the applicability of

an operator, or to identify conicts in a plan.) The truth criterion can exploit the fact that a

functional predicate completely determines the truth of any query when the functional arguments

are given. For example, any query about an object's location is completely determined by the most

27

State-Rule: at-region
Arguments: object1, region2, region1 is not region2 class universal
Trigger: (at object1 region2)
E�ects: :(at object1 region1)

Figure 5: SIPE{2 Deductive Rule With a Universal Variable

recent fact giving the object's location. Therefore, the truth criterion does not need to process the

e�ects of actions that occur before the last state in which the object's location was changed. In

contrast, the truth criterion must process the e�ects of all actions in the plan in order to determine

the set of all objects at a particular location.

Without functional predicates, deducing that a moved object is no longer at its previous location

can be problematic when di�erent parts of the plan are at di�erent levels of planning abstraction

[31, Chapter 4]. There are various ways to work around such problems, generally involving mod-

i�cations to operators to perform book-keeping for coordinating planning abstraction levels. In

contrast, the problem never arises with functional predicates since they determine an object's lo-

cation independent of earlier actions in the plan. Thus, functional predicates enable a simpler

encoding of the domain, because methods to coordinate abstraction levels are not needed.

In summary, because functional predicates determine an object's location independent of earlier

actions in the plan, knowledge is easier to encode, deducing that an object is not at its previous

location is unnecessary, and all planning algorithms querying an object's location can ignore any

e�ects that precede the assertion of a functional predicate specifying an object's location. The

resultant savings are proportional to the number of relevant queries and the size of the plan. While

the speci�cs of the implementation of the truth criterion will a�ect the savings accrued, the ability

to ignore earlier parts of the plan can provide signi�cant savings in most partial-order planners.

E�ciency gains in practice Functional predicates are implemented in SIPE{2 using deductive

rules whose e�ects make use of universal variables that are constrained to be distinct from the

functional value. The state rule in Figure 5 is the functional predicate version of the causal rule

in Figure 4. If an action has the e�ect AT(Robot region1), SIPE{2 would trigger this state-rule

and deduce the e�ect :AT(Robot x), where x matches all objects of class region di�erent from

region1. In nearly every application in which SIPE{2 has been used, functional predicates have

proven valuable. The military domain employs the state rule from Figure 5, along with similar

rules for the other location abstraction levels (for reasons described in Section 6.4.4). The robot

domain has similar rules for its two levels of abstraction.

28

Problem With FPs Without FPs Ratio

Robot 1.4 4.5 3.2
Robot-with-1 1.8 7.1 3.9
Robot-with-5 2.2 16.7 7.6
Mil-Small-1+ 0.9 7.8 8.7
Mil-Big-1+ 4.5 38.6 8.6

Table 2: Deduction Times (in seconds) with and without Functional Predicates (FPs)

Problem With FPs Without FPs Ratio

Robot 2.6 6.0 2.3
Robot-with-1 3.2 8.4 2.8
Robot-with-5 3.6 18.3 5.1
Mil-Small-1+ 12.2 22.3 1.8
Mil-Big-1+ 75.5 133.1 1.8

Table 3: Plan Generation Times (in seconds) with and without Functional Predicates (FPs)

Tables 2 and 3 show the e�ciency gains from exploiting the functional properties of locations

in these domains.5 Table 2 shows the time spent deducing the e�ects of actions during generation

of plans for various problems,6 while Table 3 shows the total time for plan generation. In both

tables, the second column shows the times when functional predicates were employed while the

third column shows the times when the original causal rules with preconditions were employed (as

in Figure 4). The last column shows the ratio of the latter to the former.

The e�ects in Table 2 are striking. For the robot problems (representing a fairly simple test

case), deduction takes 3.2 to 7.6 times as long when functionality is not exploited. For the military

problems (representing a more sophisticated and demanding test), deduction takes almost 9 times

as long in the single abstraction-level case. Table 3 shows that plan generation takes from 2 to 5

times as long in the robot problems, and almost twice as long in the military problems.

It is instructive to examine the e�ects of functional predicates on planning algorithms other

than deduction. Because of its size and complexity, the large military problem Mil-Big-1+ is the

best example to consider. The two tables shows that, without functional predicates, deduction time

increases by 34.1 seconds, while plan generation time increases by 57.6 seconds. Thus 23.5 extra

seconds are consumed by non-deductive components of the planning process when functionality is

5All computation times in this paper are user run time in seconds for SIPE{2 running in Lucid Common Lisp.
The times in Tables 2 and 3 are for a Sun Sparc 20; all other times are for a Sun Sparc 1+.

6These times include deduction of all e�ects, including non-locational facts.

29

not exploited (accounting for roughly 31% of the increased plan generation time).

Functional predicates in other systems Our results show that functional predicates can

make locational reasoning signi�cantly more e�cient in partial-order planners. Most formally de-

�ned AI planners, including SNLP [18] and TWEAK [7], do not support functional predicates.

(UCPOP [25] is an exception | its universally quanti�ed e�ects can be used to represent func-

tional predicates.) By contrast, problem-solving systems that were built for real-world problems

often employ techniques for e�ciently reasoning about functional predicates. PRS [21], a reactive

control system, allows predicates to be declared functional in certain arguments with the deduc-

tive subsystem of PRS enforcing the constraint implicitly. Functionality is used frequently in PRS

applications. O-Plan2 [30] encodes functional predicates using an explicit functional syntax (for

example, AT(Bill) = Whitehouse). The advantages of functional predicates for reasoning about

mathematics in O-Plan2 have been described [5].

Universal variables Functional predicates are one use of the capabilities that universal variables

provided in SIPE{2. More generally, any subset of the arguments to a predicate can be universal

variables, and constraints can be added to a universally quanti�ed variable to designate a certain

set of objects that can be used in the e�ects of actions. The former is not needed for locational

reasoning, but the latter can be useful. For example, an object is at a location at each abstraction

level at any one time. By constraining the location variable to a certain class, SIPE{2 makes the

variable (and thus the functionality relationship) apply to only one abstraction level. Since an

object can have one location for each abstraction level, PRS and O-Plan2 can only use functional

predicates when there is a single level of abstraction (unless di�erent predicate names are used for

each level, as described in Section 6.4.4).

Universal variables can also be used to simplify reasoning about sets of objects. In the robot

domain, universal variables (with suitable constraints) can be used to represent the set of objects

held by the robot when it moves. These objects would have their new locations deduced by a single

e�ect based on this universal variable. This approach was used for the robot experiments listed in

Table 3. Thus, the plan generation time when the robot held �ve objects increased only slightly

over the case for one object (see lines 2 and 3 of Table 3). The same number of deduced e�ects

are present in both problems, although there are �ve times as many constraints on the universal

variables when the robot holds �ve objects. Without using universal variables to represent sets, a

planner would have to deduce �ve location predicates when the robot held �ve objects (and, without

functional predicates, �ve additional negated location predicates to remove the prior locations).

30

6.4.2 Lesson 2: Instantiation of Variables

Many AI planners use a least-commitment approach to variable binding, meaning that they delay

the instantiation of a planning variable until as late as possible (i.e., until su�cient constraints

accumulate to identify a single satis�cing value, or until an instantiation must be made). Early

instantiation can result in a poor choice that leads to low-quality solutions, exploration of an

unnecessarily large search space, or failure to �nd any solution at all. Conversely, uninstantiated

variables increase the computational complexity of any reasoning system, as they introduce the

costly problems of general-purpose uni�cation and constraint satisfaction. Uninstantiated variables

are particularly expensive for planning systems [7, 31].

In the military operations domain, the cost of uninstantiated variables is high: planning vari-

ables can have dozens of constraints and hundreds of possible instantiations, particularly for loca-

tions to which objects might be moving. For example, a variable representing a destination air�eld

in a plan may have constraints on the capacity of the airport, runway length, transit approval,

proximity to other locations, and availability of maintenance and fuel. Each of these constraints

might have a large number of potentially satis�cing objects, making constraint satisfaction and

variable uni�cation expensive. Uninstantiated variables can increase substantially the computation

time for many parts of the planning process, including the deduction of locational information.

Two methods can be used to reduce the computational costs that stem from uninstantiated

variables: (1) instantiate certain variables early, and (2) minimize reasoning with constraints that

contain uninstantiated variables. E�ective application of these methods requires domain-speci�c

knowledge as to when they can be used without adversely a�ecting the quality of the solution

found by the planner. In this section, we describe the application of these methods for locational

reasoning in the military domain, and show the resulting e�ciency gains.

In the military domain, certain variables can be instantiated immediately without a�ecting

solution quality. For example, an acceptable deployment force can be chosen as soon as the nature

of the enemy threat is recognized; in contrast, the transportation route should be left uninstantiated

until further constraints are accumulated (e.g., the type of airplanes available might a�ect the choice

of destination airport). Similarly, reasoning with certain constraints can sometimes be delayed until

all relevant variables are instantiated. As an example, the planner sometimes needs to compute the

temporal duration of a deployment to a location that is not yet determined. To do so, it is necessary

to consider all possible location values when computing the numerical bounds on the duration. A

move from a location with M possible instantiations to one with N possible instantiations requires

M times N computations in the worst case. If the bounds on the duration are critical to generating

31

a good plan, then they should be computed. However, if it is known that acceptable plans can be

generated without considering these bounds, then large e�ciency gains can be made by delaying

their computation until the target destination is determined.

To take advantage of such insights, a planning framework must support the representation of

domain-speci�c knowledge about when to instantiate particular variables, and when to postpone

certain constraint analyses. SIPE{2 permits speci�cation of a set of variables for each operator that

must be instantiated immediately after application of the operator. SIPE{2 also provides a global

list of functions for processing numerical quantities that will not have their bounds computed until

all relevant variables have been instantiated. Such numerical functions play an important role in

real-world problems.

Experimental Results Table 4 shows the e�ciency gains when these domain-speci�c techniques

are used for the Mil-Small-1+ and Mil-Big-1+ problems. In particular, it illustrates the utility of

(a) forcing the instantiation of variables representing deployment units and their initial locations

in operators that introduce a movement of troops, and (b) blocking the computation of bounds

on temporal durations for move operators when there are uninstantiated arguments. Forced in-

stantiations were considered for two cases: all unit variables (army, navy and air units) and army

units only. The tests summarized in Table 4 employed the functionality property for locations, as

discussed in the previous section.

By forcing instantiation of all unit variables and their initial locations, and computing temporal

durations only for fully instantiated move operators, the 47-action plan was generated in approx-

imately one minute, with acceptable choices of objects and locations. In that case, all 47 actions

were a�ected by the decision to instantiate unit and location variables.7 When only army variables

and their starting locations were instantiated, planning time basically quadrupled, with 28 of the 47

actions a�ected. When bounds on durations were computed for uninstantiated locations, planning

time approximately tripled. One would expect that the combination of these two techniques would

be multiplicative since bounds would be computed on fewer uninstantiated locations. The �nal line

of Table 4 supports this hypothesis, since planning took 10-14 times longer when only army units

were instantiated early and reasoning with uninstantiated location variables was permitted.

When functional representations for predicates are used (as described in Section 6.4.1), one

would expect that the cost of deducing locational facts would not be greatly a�ected by uninstan-

tiated variables, because the deductive process does not need to instantiate the moved object or

7Saying that an action was a�ected by the instantiation process means that an early instantiation was made for
some variable of that action. This does not necessarily mean that the resultant action di�ers from the corresponding
action in the plan generated without early instantiations of variables.

32

Variables Use Uninstantiated Mil-Small-1+ Mil-Small-4 Actions

to Instantiate Duration Constraints (seconds) (seconds) A�ected

army, navy, air no 49 80 47/47
army no 215 291 28/47

army, navy, air yes 164 202 18/47
army yes 711 800 10/47

Table 4: Plan Generation Times (in seconds) with and without (1) Early Instantiation of Variables
and (2) Reasoning with Uninstantiated Constraints

the location, or even compute restrictions on the instantiations implied by the constraints. Simi-

lar domain-speci�c knowledge should improve computational properties in any least-commitment

planner when solution quality permits. We also note that the usefulness of instantiating variables

and avoiding analysis of constraints on uninstantiated variables is not limited to locational rea-

soning. This hypothesis is supported by measurements taken of the time spent doing deductions

in the Mil-Small-1+ problem with uninstantiated variables (i.e., line 2 of Table 4): of the 215

seconds for plan generation, only 6.4 seconds were spent on deductions. However, the cost of us-

ing locational information elsewhere in the planner is greatly increased by having uninstantiated

variables for both objects being moved and the locations to which they are moved, as shown by

the quadrupling of plan generation time compared to the improved method. For instance, unifying

two locational variables takes longer, which in turn increases computation time for tasks such as

testing a precondition or checking for conicts in a plan.

Eager vs Delayed Commitment The method of instantiating variables early, which provided

signi�cant computational savings for the two military problems, contrasts with the approach of

delayed commitment to variable bindings advocated by others. Advocates of the delayed commit-

ment approach argue that unnecessary backtracking can be eliminated by postponing choices until

as late as possible. In particular, Yang and Chan cite experimental results (based on an extension

to the SNLP planner implemented by Barret and Weld [3]) showing that delayed commitment can

improve planning performance substantially in certain cases [36].

A key issue for determining whether to use eager or delayed variable binding is the density

of the solution space: the military problems used for the experiments reported here have dense

solution spaces (although the choice of instantiations can a�ect solution quality). In addition,

the computation of bounds on temporal durations of troop movements required for the military

problem has a relatively high cost. In contrast, many of the test cases in [36] have few solutions.

33

It remains an open question to determine where on the spectrum most real-world problems lie,

although in our experiences high-density solution spaces are more common.

6.4.3 Lesson 3: Reasoning E�ciently with Aggregates

The belief revision rules for aggregates provide the means to maintain explicit location information

for objects and their subparts. Unfortunately, application of these rules (even for small numbers

of subparts) can be computationally expensive. Two factors contribute to the expense. One is the

number of locational facts that need to be maintained when an aggregate with many descendants

is moved. This cost is magni�ed when multiple levels of abstraction are used. The second factor is

the cost of checking the belief revision rules for splitting and joining aggregates: although the rules

may apply infrequently, it can be expensive to validate their inapplicability (especially for the join

rule).

The �rst problem can be overcome for planning systems by making slight modi�cations to

planning operators. Note that when the subparts of an aggregate are all co-located, there is no

need to store their individual locations, as this information can be derived from the position of

the aggregate itself. Locational information for subparts of an aggregate need be maintained only

when the subparts are not co-located. Once a locational fact for a subpart is generated, the location

will be updated by the belief revision rules independently of its parent and fellow subparts. By

restricting the maintenance of explicit locational facts to objects that are not co-located with their

immediate parent, it becomes possible to eliminate the belief update rules (20) and (21).

Operationalizing this strategy requires only a small change to the planning operators. Let

PARENT(xi; x) denote the relationship that x is a direct parent of xi in the aggregation hierarchy.

In the original scheme, operators made use of facts of the form AT(xi; l) to bind location variables.

In the new approach, it is also necessary to consider the relationship de�ned by PARENT(xi; x)^

AT(x; l). For example, Figure 6 illustrates a SIPE{2 operator for moving a force from a city to an

air�eld. This operator employs the conjunctive precondition

(parent movable1 force1)

(OR (AT movable1 urban1) (AT force1 urban1))

which �rst tries to bind the current location of the object movable1 by looking for an AT fact for

the object and, if one does not exist, looking for an AT fact for its parent.

While individual movement actions will instigate the splitting of aggregates, the new approach

requires a slight modi�cation to the join rule. In particular, the schemas of (22) must be extended

34

Operator: move-from-urban-to-air�eld
Arguments: movable1,air�eld1,urban1,force1,

duration1 is (ground-duration urban1 air�eld1);
Purpose: (at movable1 air�eld1)
Precondition: (parent movable1 force1)

(or (at movable1 urban1) (at force1 urban1))
Plot:

Process

Action: move-ground
Arguments: movable1,urban1,air�eld1;
Duration: duration1;
E�ects: (at movable1 air�eld1)

End Plot End Operator

Figure 6: Movement Operator that Inherits Location from Parent

to remove the location facts for subparts when a join occurs:

SUBPART(x1; x); AT(x1; l); : : : ; SUBPART(xk�1; x); AT(xk�1; l); (23)

UNAk(x1; : : :xk); SUBPART(xk; x); AT(xk; l)
+ !

AT(x; l)+; AT(x1; l)
�
; : : :AT(xk; l)

�

The second problem, the cost of checking applicability of the split and join belief revision rules,

can be overcome in many cases by having planning operators assume responsibility for splits and

joins, rather than leaving those responsibilities to deductive rules. This method requires a plan

operator that independently moves subparts to explicitly note their dispersal and recomposition. In

particular, a join involves both recording the position of the newly composed aggregate and elimi-

nating explicit locational facts for all subparts (as was the case with (23)) above. When applicable,

this scheme eliminates the need for the rule schema (22), resulting in substantial computational

savings (as described below). This method applies to domains where aggregates are split into sub-

parts to achieve some �xed set of goals and regrouped once those goals are achieved. (For example,

the transporting of cargo and groups of people has this property: cargo or groups of people may

be split into subparts to be moved to target locations using di�erent methods.)

The SIPE{2 operator Deploy-airforce in Figure 3 uses the above technique to explicitly man-

age the splitting and merging of aggregates. This operator describes how to deploy the cargo for

an airforce unit to a particular air�eld. Deployment involves shipping a portion of cargo by sea and

the remainder by air to a target destination. The actual routes are determined by the predicates

route-aloc and route-sloc in the precondition. The variables cargobysea1 and cargobyair1

35

Problem PF # Nodes Aggregation No Aggregation Ratio

total per node total per node

2 47 59 1.26 159 3.38 2.69
Agg-Mil-Small-1+ 3 58 89 1.53 324 5.59 3.64

4 69 125 1.81 480 6.96 3.84

2 47 86 1.83 196 4.17 2.28
Agg-Mil-Small-4 3 58 127 2.19 394 6.79 3.10

4 69 167 2.42 571 8.28 3.42

Table 5: Plan Generation Times (in seconds) with and without the Aggregation Methods, for
various Partition Factors (PFs).

constitute a partition of the airforce into subparts. The processes labeled split-aggregate and

join-aggregate in the plot perform explicit maintenance of subpart/aggregate locations. In par-

ticular, the split-aggregate process removes the location for the airforce and asserts locations for

the subparts. The join-aggregate process removes the locations for the subparts once they have

regrouped at the target destination and concludes the fact that the aggregate is at the target des-

tination. The original formulation of the Deploy-airforce operator was similar, but omitted the

processes split-aggregate and join-aggregate.

By using the techniques of (a) keeping location information only for subparts not co-located

with their parent force, and (b) splitting and joining aggregates in the operators instead of in

the deductive rules, reasoning about aggregates in the military operations planning problem can

be made much more e�cient. Table 5 summarizes experimental results that support this claim.

The table contrasts plan-generation times for various problems in the military domain when the

original translations of the belief revision rules are used, with the case where the two aggregation

techniques from this section were employed. The problems used are similar to the Mil-Small-1+

and Mil-Small-4 problems described above, but with a slight modi�cation so that forces could be

subdivided into varying numbers of aggregates. These problems are named Agg-Mil-Small-1+ and

Agg-Mil-Small-4, respectively. We refer to the value of k as the partition factor (PF) for a given

problem. In particular, each army/navy/air force was split into k subforces, one of which in turn

was partioned into k subforces, where k was set to 2, 3, or 4. Planning operators were modi�ed

slightly to force the explicit movement of all subforces. The original Mil-Small-1+ problem had a

PF of 2; the plans for PF values 3 and 4 contained 58 and 69 actions, respectively.

The data shows that without the techniques described in this section, planning time more than

doubles in all cases, and almost quadruples in some cases. Furthermore, the e�ciency gains increase

as the PF increases. Given the marked speedup for the limited number of aggregates used in the

36

test cases, it is clear that the aggregation techniques will be critical in domains with deep or bushy

aggregation trees.

We note that the method presented in this section moves information from deductive rules

to operators. Above, it was argued that such a transfer is generally undesirable. The reasons

cited were the need to duplicate the e�ects of the deductive rules in multiple operators and the

possible need to increase the number of operators, corresponding to the application of di�erent

deductive rules in di�erent situations. Implementing the techniques of this section requires adding

the split and join e�ects explicitly to all operators that required the partitioning of aggregates.

However, since the location rules were not highly context-dependent, the second consideration was

not an issue. Given our experimental results, the trade-o� between computationally e�ciency and

representational perspicuity seems to argue for embedding splits and joins in operators rather than

de�ning them as separate deductive rules.

6.4.4 Lesson 4: Explicit Separation of Abstraction Levels

The theory T H
M presents a formalization of locations and movement for objects whose locations are

de�ned at multiple levels of abstraction. This theory was de�ned using a single AT predicate, with

the function LEVEL providing the means to distinguish abstraction levels of places. As noted in

Section 2.3, an equivalent formalization exists based on the use of a separate AT predicate for each

level of abstraction. With this alternative approach, abstraction levels are explicitly embedded

in the location predicates themselves. The explicit separation of abstraction levels eliminates the

need to directly reason about the abstraction levels of objects. The explicit separation also enables

simple speci�cation of actions that are appropriate for moving objects at one abstraction level but

not at another. For example, an operator that moves only from room to room could be expressed

using a goal based on a predicate AT-ROOM.

The choice of single vs multiple predicates for representing locations at varying levels of abstrac-

tions should not signi�cantly inuence planning e�ciency since the number of deductions is the

same in both cases, only the method of representing and triggering the deductive rules changes. The

use of separate abstraction levels could provide some computational savings, however, by providing

better control of the triggering of deductions. With a single AT predicate, a movement at the lowest

level of abstraction can trigger deductions at all higher levels of abstraction. However, deductions

at the higher levels also deduce AT predicates that in turn may retrigger the same deductive rules

at the lower level. This looping cycle must be broken; the cycle can stop when predicates that

are already true are rededuced, but the computation of the last round of already-true deductions

can be avoided by keeping abstraction levels separate. This cost is likely to be trivial in reasoning

37

systems other than planners, and should not be high in planners that use functional predicates.

However, without functional predicates, this cost could be signi�cant since queries will be made

over the partially ordered actions. With separate abstraction levels, there are di�erent deductive

rules for each abstraction level (with either di�erent predicate names or di�erent class-membership

constraints), so only the necessary deductions are triggered.

The disadvantage of multiple AT predicates is the need for a larger number of rules for updating

locational information. However, the rules are simple and have a one-time development cost when

the locational theory is encoded. Weighing this cost against the computational savings described

above will depend on the properties of the reasoning system being used to implement the locational

theory. In particular, the computational properties will be important if the reasoning system is

a partial-order planning system not using functional predicates for locations that is generating

large plans with many unordered actions. There may be concerns about the perspicuity of the

representation as the number of predicate names grows, but the technique of using class-membership

constraints eases this problem.

6.5 Summary of Implementation Techniques

Several techniques have been described for implementing reasoning about locations in planning

systems. These techniques can be employed to increase e�ciency signi�cantly over direct trans-

lations of the locational theories into planning operators. Such techniques are discovered only by

implementing and using a planner, and analyzing how it can be made more e�cient. Here, we

summarize the lessons learned.

� The ability to represent functional predicates has proven valuable in a number of reasoning

systems in areas as diverse as planning, reactive systems, and mathematical modeling. In

the military domain, replacing the simple rules that explicitly delete location facts with rules

that implement functional predicates cut deduction time by almost one-ninth, and overall

planning time almost in half.

� In many domains, early instantiation of certain variables and postponing analysis of certain

constraints on uninstantiated variables can signi�cantly improve e�ciency without adversely

a�ecting solution quality. Application of these techniques in the military domain reduced

planning time by a factor of 3 for postponing constraints, by a factor of 4 for instantiating

some variables, and by a factor of 10{14 when the two were combined.

� Reasoning about the location of aggregate objects can be implemented more e�ciently through

the use of two techniques. The �rst is to maintain explicit location facts only for subparts

38

Techniques Combinations

Functional Predicates X X
Ignore Uninstantiated Durations X X
Instantiate Unit Variables X X X X

Planning Time (seconds) 80 202 171 285

Table 6: Plan Generation Times for Mil-Small-4 using Various Combinations of Techniques

Techniques Combinations

Aggregation X
Functional Predicates X X
Ignore Uninstantiated Durations X X X
Instantiate Unit Variables X X X X

Planning Time (seconds) 86 196 407 537

Table 7: Plan Generation Times for Agg-Mil-Small-4 using Various Combinations of Techniques

that are not co-located with their parents. The second is to embed the splitting and join-

ing of aggregates in the planning operators rather than using a deductive locational theory.

On moderate-sized problems in the military domain, these techniques made plan generation

faster by a factor of 3.

� Multiple predicate names or class-membership constraints on variables can be used in lieu

of explicit representations of abstraction levels for objects and can produce computational

advantages when reasoning over large, partially ordered plans. Separation of abstraction

levels by these means also supports the encoding of actions that apply only at one level. The

cost of doing so is an increased number of deductive rules.

Importantly, the computational savings obtained by these techniques are complementary in the

sense that combinations of the techniques yield greater e�ciency. Table 4 shows that the combi-

nation of instantiating variables and not computing bounds on possible values for uninstantiated

variables (such as temporal durations) has a multiplicative savings. Tables 6 and 7 summarize

experimental results for other combinations of techniques. Table 6 shows that the savings of func-

tional predicates and computing durations only for instantiated location variables are additive: the

80 seconds required for Mil-Small-4 when both techniques were used increased to 171 seconds with-

out functional predicates, to 202 seconds when computing all durations, and to 285 seconds when

neither technique was used. While it seems reasonable that these techniques would be cumulative

39

with the aggregation methods, the situation is complicated because the latter a�ects the amount

of deduction being done. Table 7 shows that the savings are indeed cumulative in the Mil-Small-4

problem in that not using functional predicates doubles planning time for both the original and

improved aggregate methods (see also Table 5). As well, computing all durations adds an additional

2 minutes to the planning time.

Finally, we note that while the aggregate techniques presented here are particular to reason-

ing about locations, functional predicates, universal variables, and domain speci�c knowledge for

instantiating variables can improve reasoning e�ciency for many classes of knowledge.

7 Conclusion

AI planning theory will have more impact when it can address nontrivial problems. A signi�cant

component of achieving that goal is to develop representations for commonly used domain knowl-

edge that are both correct and heuristically adequate. While much progress has been made in

the development of planning systems, the representational and computational issues of formalizing

knowledge remain severely under-explored.

In an attempt to partially �ll the void, this paper has analyzed both the theoretical and com-

putational issues involved in representing and reasoning about locational information for objects

that can move or be moved. Locational information plays an important role in a broad range of

AI applications, including planning and plan execution problems.

We presented a formal locational theory along with extensions for multiple abstraction levels

and aggregation. We de�ned a belief revision framework and a provably correct set of belief

revision rules that maintains a database in accordance with each theory. The complete theory

is applicable to any domain in which the locations of objects change and is compatible for use

in any problem-solving framework in which locational information must be maintained, including

generative planners and plan execution systems. We also considered the practical application of

the locational theories to large-scale planning tasks within the SIPE{2 framework. Based on our

experiences with these planning tasks, we identi�ed several implementation techniques that can be

used to improve e�ciency signi�cantly over direct implementations of the theories.

Our locative theories are not intended to cover all eventualities. Rather, they are designed to

be both epistemically and heuristically adequate for solving many classes of problems of practical

interest. It is our hope that this paper will encourage similar e�orts that combine analyses of theory

and practice for widely used classes of domain knowledge.

40

Acknowledgements

The research reported in this paper was supported by the ARPA/Rome Laboratory Planning

Initiative under Contract F30602-90-C-0086.

41

Appendix: Propositions and Proofs

The appendix contains proofs for the propositions from Section 4.

Proposition 1 The BR-system R0 is sound and complete with respect to the theory T 0
M for the

uent AT(x; l; s) and action map Fm.

Proof. Let D be a propositional database that is closed and consistent relative to T 0
M for AT, and

let s0 be an introduced situation constant. By virtue of the consistency and completeness

relative to T 0
M , there is exactly one AT fact in D for each object in the domain. Now,

consider an arbitrary object O and location L. Application of the BR-rule (16) for an update

AT(O;L)+ preserves the number of location facts in the database: while AT(O;L) replaces

the previous location fact for O, all other AT facts remain unchanged and no new AT facts

are added. The result is a database D0 = D
fAT(O;L)+g where again there is precisely one

AT fact per object.

To establish soundness, it is necessary to show that for any AT proposition AT(O0; L0) in D0,

T 0
M [S(D; fATg; s0) j= AT(O0; L0;MOVE(O;L; s0)) (24)

holds. As noted above, there are two types of AT facts in D0: the added fact AT(O;L), and

facts AT(O1; L1) that were also in D, where O 6= O1. The fact AT(O;L;MOVE(O;L; s0)) is

an immediate consequence of the relocation axiom (12) in T 0
M . For a fact AT(O1; L1) 2 D

0

that is also in D, necessarily AT(O1; L1; s0) 2 S(D; fATg; s0). Combining this uent with the

inertial axiom (13) yields

AT(O1; L1;MOVE(O;L; s0)). The soundness of R
0 for T 0

M immediately follows.

Proof of completeness requires only that when condition (24) holds, AT(O0; L0) 2 D0. Exam-

ination of T 0
M shows that the only AT uents in situation MOVE(O;L; s0) derivable from

T 0
M [S(D; fATg; s0) are AT(O;L;MOVE(O;L; s0)) and AT(O1; L1; s0) where AT(O1; L1) 2

D0 and O1 6= O. As noted above, the corresponding situation-less projections of these AT

facts are contained in D0, thus establishing completeness.

Proposition 2 Let H be an abstraction theory. The BR-system RH is sound and complete with

respect to the theory T H
M [H for uent AT(x; l; s) and action map Fm.

Proof. Let D be a propositional database that is consistent and closed with respect to T H
M [H

for AT, and let s0 be an introduced situation constant. Consider an arbitrary object O and

location L.

42

By the consistency and closure relative to T H
M [H, there is an abstraction level k for each

object such that the object has an assigned location for levels k and higher in D but no

location at levels lower. Furthermore, there is at most one AT fact in D for an object at

any given level (by the situationalized version of axiom (5)). The rules of RH preserve these

properties: for the update AT(O;L)+, AT(O;L) is added to the database as are location facts

for all levels above L, while all previous location facts for O are removed. No AT facts for

other objects are removed and no further AT facts are added.

To establish soundness, it is necessary to show that for any AT proposition AT(O0; L0) in

D0 = D
AT(O;L)+,

T H
M [H [S(D; fATg; s0) j= AT(O0; L0;MOVE(O;L; s0)): (25)

AT(O;L;MOVE(O;L; s0)) is an immediate consequence of the relocation axiom (12) while

AT facts for O at higher levels of abstraction subsequently follow by (4). From (13), for any

object O1 distinct from O,

AT(O1; L1; s0) � AT(O1; L1;MOVE(O;L; s0)):

By these observations, all AT facts in D
 fAT(O;L)+g are valid consequences of T 0
M [H [

S(D; fATg; s0) and so RH is sound for T H
M [H.

Completeness amounts to showing that when condition (25) holds, AT(O0; L0) 2 D0. Exam-

ination of T H
M shows that the only AT uents for situation MOVE(O;L; s0) derivable from

T 0
M [S(D; fATg; s0) are AT(O;L;MOVE(O;L; s0)) and

AT(O;L0;MOVE(O;L; s0)) where L
0 is above L in the abstraction hierarchy, and AT(O1; L1; s0)

where AT(O1; L1) 2 D
0 and O1 6= O. As noted above, the situationless projections of these AT

facts are all in D0. Since no additional instances of AT are entailed by T 0
M[H[S(D; fATg; s0),

RH is complete for T H
M [H.

Proposition 3 Let A be an aggregation theory. The BR-system RA is sound and complete with

respect to the theory T H
M [A for the uent AT(x; l; s) and action map Fm.

Proof. Let D be a propositional database that is consistent and closed relative to T A
M [A for AT,

and let s0 be an introduced situation constant. Consider an arbitrary object O and location

L.

The consistency and completeness ofD relative to T A
M[A ensure that the following conditions

hold for any object C and location P:

43

If AT(C; P) 2 D and Ci is a descendant of C then AT(Ci; P) 2 D

(i)(ii) If AT(Ci; P) 2 D and C is an ancestor of Ci then either AT(C; P) 2 D or there is some

descendant Cj of C and some location Pj 6= P such that AT(Cj ; Pj) 2 D

(iii) Each object has at most one location.

We now show that database D0 = D
 AT(O;L)+ has the following characteristics:

AT(O;L) 2 D0

(a)(b) if Oi is a descendant of O then AT(Oi; L) 2 D
0

(c) if AT(O0; L) 2 D0 and O0 is an ancestor of O then either AT(O0; L) 2 D0 or there is some

descendant Oj of O and some location Lj 6= L such that AT(Oj; Lj) 2 D
0

(d) Each object has at most one location

(e) All other AT facts are as in D.

We do so by �rst showing that properties (a), (b), (d) and (e) hold for the update when only

rules (16) and (20) are considered; similarly, (a), (c), (d) and (e) hold for the update when

only rules (16), (21) and (22) are used. We then show that rules (16) { (22) can be combined

to establish all conditions (a) { (e). We note that in the case where AT(O;L) 2 D, the update

has no e�ect and the claim trivially follows. Hence, we assume below that AT(O;L) 62 D.

Consider �rst the rules (16) and (20). By a simple inductive proof on the number of levels of

descendants of O, we show that for update AT(O;L)+, conditions (a), (b), (d) and (e) hold.

If O has no descendants, then the only applicable BR-rule is (16), which adds AT(O;L) to the

database and removes any previous AT fact for O. Given properties (i) { (iii) for D, it is easy

to verify that (a), (b) (d), and (e) all hold. Now suppose O has n + 1 levels of descendants

and let A be a descendant at level n + 1. Then there is a single nth-level descendant B of

O for which SUBPART(A;B) holds. In terms of the order application of br-rules, the case

with n + 1 descendants is equivalent to the case with n descendants up to the point of the

(possible) addition of AT(B;L) to the database (that is, the n+ 1st descendant is irrelevant

until changes are made to the nth descendant). If AT(A;L) is in D, then the rule applications

are still identical. If AT(A;L) 62 D, then when AT(B;L) is added to the database both (16)

and (20) are triggered in the n + 1 levels case but only (16) in the n level case. The rules

(16) and (20) do not interact with each other: the former removes any an AT fact for B (if

there was one) while the latter adds AT(A;L), which in turn triggers (16) to remove any

previous AT fact for A. No further rules apply. Thus, the resultant database is equivalent to

44

the case for n levels of descendants, except that any previous AT fact for A has been replaced

by AT(A;L). Using the inductive hypothesis, it is straightforward to check that conditions

(a), (b), (d) and (e) hold, as claimed. From a more general perspective, the rules (16) and

(20) have the e�ect of setting the unique location for all descendants of O to L, while not

a�ecting any other AT facts.

Now consider the rules (16), (21) and (22). We show by induction on the number of levels of

ancestors for O that (a), (c), (d) and (e) hold. For the base case, suppose O has no proper

ancestors. In this case, the rule (16) applies but no others, resulting in D0 being the same

as D except that any AT fact for O has been removed and the new fact AT(O;L) added. In

this case, D0 satis�es the conditions (a), (c), (d), and (e). Now suppose the result holds for

n ancestors and let B be the n + 1st ancestor. As above, if AT(A;L) 2 D for some subpart

A of B (that is, SUBPART(A;B) holds) then by (2), AT(B;L) 2 D and the update has no

e�ect on AT facts for B. So suppose that the update AT(O;L)+ results in AT(A;L) being

added to the database for some object A that is an n-level ancestor of O. There are two

cases to consider. If the update AT(A;L)+ triggers the corresponding instance of the join

rule (22), then AT(B;L) will be added, which in turn triggers (16). This rule would remove

any previous AT fact for B. If the split rule (21) applies, the fact AT(B;L) is removed but

no other changes occur. In both cases, it is straightforward to check that (a), (c), (d), and

(e) hold. To generalize, rules (16), (21) and (22) have the e�ect of reseting the location of all

ancestors of O without a�ecting any other AT facts.

We now prove that (a) { (e) hold when all the rules in T A
M [A are employed. As noted above,

for an update that assigns a location to an object, the rules (16) and (20) reset the location

of that object and all descendants without impacting any other AT facts. Furthermore, the

rules (16), (21) and (22) reset the locations for the ancestors of the object without a�ecting

descendants. This latter set of rules can trigger further applications of (16) and (20), which

in turn cause the unique AT facts for certain descendants to be reset in accord with (b).

However, the two rule sets do not interfere with each other. As such, application of the

merged set of rules produces a database where all conditions (a) { (e) hold.

To establish soundness, it is necessary to show that for any AT proposition AT(O0; L0) in

D0 = D
AT(O;L)+,

T A
M [A [S(D; fATg; s0) j= AT(O0; L0;MOVE(O;L; s0)): (26)

45

Consider the various AT facts in D0, as detailed by (a) { (e). First, consider the AT facts

for O along with its ancestors and descendants. AT(O;L;MOVE(O;L; s0)) is an immediate

consequence of the movement axiom (12). By (b), AT(Oi; L) 2 D
0 for any descendant Oi; the

fact AT(Oi; L;MOVE(O;L; s0) follows from AT(O;L;MOVE(O;L; s0)) and the situational-

ized version of (10). By (c), for any ancestor B of O, the fact AT(B;L) 2 D0 only when all

subparts of B are at L; that is, when AT(Bi; L) 2 D0. The fact AT(B;L;MOVE(O;L; s0))

then follows from the situationalized version of axiom (8). From (13), for any object O1 not

related by the SUBPART relation to O,

AT(O1; L1; s0) � AT(O1; L1;MOVE(O;L; s0)):

By these observations, all AT facts in D
 fAT(O;L)+g are valid consequences of T 0
M [

S(D; fATg; s0), and the soundness of RA for T A
M [A follows.

Completeness reduces to showing that when condition (26) holds, AT(O0; L0) 2 D0. Exam-

ination of T A
M shows that the only AT uents for situation MOVE(O;L; s0) derivable from

T A
M [A [S(D; fATg; s0) are AT(O;L;MOVE(O;L; s0)) and

AT(Oi; L;MOVE(O;L; s0)) where Oi is a descendant of O, AT(B;L; s0) where B is an an-

cestor of O whose descendants are all at L, and AT(C;M) where AT(C;M) 2 D0 and C is

not related to O. As noted above, the situationless projections of these AT facts are all in

D0. Since no additional instances of AT are entailed by T A
M [A [S(D; fATg; s0), it follows

that RA is complete for T A
M [A.

Proposition 4 Let H be an abstraction theory and A be an aggregation theory. The BR-system

R� is sound and complete with respect to the theory T M [H [A for the uent AT(x; l; s) and

action map Fm.

Proof. The proof follows from Propositions 2 and 3 along with the observation that the BR-rules in

R� for maintaining locations for ancestors and descendants do not interfere with the BR-rules

for maintaining locations given multiple levels of abstraction.

References

[1] J. M. Agosta and D. E. Wilkins. Using SIPE-2 to plan emergency response to marine oil spills.

IEEE Expert, 11(6):6{8, December 1996.

[2] J. F. Allen. Towards a general theory of action and time. Arti�cial Intelligence, 23, 1984.

46

[3] A. Barrett and D. Weld. Partial order planning: Evaluating possible e�ciency gains. Technical

Report 92-05-01, Department of Computer Science and Engineering, University of Washington,

1992.

[4] S. Borgo, N. Guarino, and C. Masolo. A pointless theory of space based on strong connection

and congruence. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Principles of Knowledge

Representation and Reasoning: Proceedings of the Fifth International Conference (KR '96).

Morgan Kaufmann Publishers, 1996.

[5] A. Bundy. Annual Review of Science. Academic Press, 1983.

[6] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{378, 1987.

[7] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{378, 1987.

[8] E. Davis. Representations of Commonsense Knowledge. Morgan Kaufmann, San Mateo, Ca,

1990.

[9] E. Davis. The kinematics of cutting solid objects. Annals of Mathematics and Arti�cial

Intelligence, 9:253{305, 1993.

[10] J. J. Finger. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford University,

1987.

[11] T. Garvey and K. Myers. The intelligent information manager. Final Report SRI Project

8005, Arti�cial Intelligence Center, SRI International, Menlo Park, CA, 1993.

[12] M. P. George� and F. F. Ingrand. Decision-making in an embedded reasoning system. In

Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence, Detroit,

MI, 1989.

[13] M. L. Ginsberg and D. E. Smith. Reasoning about action I: A possible worlds approach.

Arti�cial Intelligence, 35, 1988.

[14] M. L. Ginsberg and D. E. Smith. Reasoning about action II: the quali�cation problem. Arti-

�cial Intelligence, 35, 1988.

[15] P. J. Hayes. Naive physics I: Ontology for liquids. In Formal Theories of the Commonsense

World, pages 71{107. Ablex Publishing Corp., Norwood, New Jersey, 1985.

[16] R. E. Korf. Planning as search: A quantitative approach. Arti�cial Intelligence, 33(1), 1987.

47

[17] O. Lemon. Semantical foundations of spatial logics. In L. C. Aiello, J. Doyle, and S. C.

Shapiro, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the

Fifth International Conference (KR '96). Morgan Kaufmann Publishers, 1996.

[18] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of the 1991

National Conference on Arti�cial Intelligence, pages 634{639, American Association for Arti-

�cial Intelligence, Menlo Park, CA, 1991.

[19] J. McCarthy. Epistemological problems of arti�cial intelligence. In Proceedings of the Fifth

International Joint Conference on Arti�cial Intelligence, Cambridge, MA, 1977.

[20] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of arti�cial

intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, 1969.

[21] K. L. Myers. User's Guide for the Procedural Reasoning System. Arti�cial Intelligence Center,

SRI International, Menlo Park, CA, 1993.

[22] K. L. Myers. Hybrid reasoning using universal attachment. Arti�cial Intelligence, 67:329{375,

1994.

[23] K. L. Myers. A procedural knowledge approach to task-level control. In Proceedings of the

Third International Conference on AI Planning Systems. AAAI Press, 1996.

[24] E. P. D. Pednault. Synthesizing plans that contain actions with context-dependent e�ects.

Computational Intelligence, 4(4):356{372, 1988.

[25] J. S. Penberthy and D. Weld. A sound, complete, partial order planner for ADL. In B. Nebel,

C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the Third International Conference (KR92). Morgan Kaufmann, 1992.

[26] D. A. Randell and A. G. Cohn. A spatial logic based on regions and connections. In B. Nebel,

C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the Third International Conference (KR92). Morgan Kaufmann, 1992.

[27] L. Schubert, M. Papalaskaris, and J. Taugher. Accelerating deductive inference: Special meth-

ods for taxonomies, colours and times. In N. Cercone and G. McCalla, editors, The Knowledge

Frontier: Essays in the Representation of Knowledge. Springer-Verlag, 1987.

[28] M. Shanahan. Default reasoning about spatial occupancy. Arti�cial Intelligence, 74(1):147{

164, 1995.

48

[29] S. F. Smith, O. Lassila, and M. Becker. Con�gurable, mixed-initiative systems for planning

and scheduling. In A. Tate, editor, Advanced Planning Technology. AAAI Press, Menlo Park,

CA, 1996.

[30] A. Tate, B. Drabble, and R. Kirby. O-Plan2: An open architecture for command, planning and

control. In M. Fox and M. Zweben, editors, Knowledge Based Scheduling. Morgan Kaufmann,

1994.

[31] D. E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan

Kaufmann, 1988.

[32] D. E. Wilkins. Can AI planners solve practical problems? Computational Intelligence,

6(4):232{246, 1990.

[33] D. E. Wilkins. Using the SIPE-2 Planning System: A Manual for Version 4.3. Arti�cial

Intelligence Center, Menlo Park, CA, August 1993.

[34] D. E. Wilkins and R. V. Desimone. Applying an AI planner to military operations planning.

In M. Fox and M. Zweben, editors, Intelligent Scheduling. Morgan Kaufmann, 1994.

[35] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduction and Appli-

cations. Prentice-Hall, 1984.

[36] Q. Yang and A. Y. M. Chan. Delaying variable binding commitments in planning. In Proceed-

ings of the Second International Conference on AI Planning Systems, pages 182{187, 1994.

49

