
Planning and Reacting

in Uncertain and Dynamic Environments

By: David E. Wilkins, Ph.D., Senior Computer Scientist

Karen L. Myers, Ph.D., Computer Scientist

John D. Lowrance, Ph.D., Program Director

Leonard P. Wesley, Ph.D., Senior Computer Scientist

Arti�cial Intelligence Center

SRI International

email: fwilkins, myers, lowrance, wesleyg@ai.sri.com

December 8, 1994

This paper has been accepted to the Journal of Experimental and Theoretical AI, and

should appear in volume 6, 1994, pp. 197-227. Meanwhile, it is also available in postcript

form on the World Wide Web in http://www.ai.sri.com/people/wilkins/papers.html.

The views, opinions and/or conclusions contained in this note are those of the authors

and should not be interpreted as representative of the positions, decisions, or policies, either

expressed or implied, of the Advanced Research Projects Agency, Rome Laboratory, or the

United States Government.

A
SRI International, 333 Ravenswood Ave., Menlo Park, Ca. 94025



Abstract

Agents situated in dynamic and uncertain environments require several capabilities for

successful operation. Such agents must monitor the world and respond appropriately to

important events. The agents should be able to accept goals, synthesize complex plans for

achieving those goals, and execute the plans while continuing to be responsive to changes

in the world. As events render some current activities obsolete, the agents should be able

to modify their plans while continuing activities una�ected by those events. The Cypress

system is a domain-independent framework for de�ning persistent agents with this full

range of behavior. Cypress has been used for several demanding applications, including

military operations, real-time tracking, and fault diagnosis.
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1 Introduction

We are interested in developing persistent agents that can achieve complex tasks in dynamic

and uncertain environments. An agent of this type requires a number of capabilities. First

of all, the agent must be taskable in that it can take appropriate responses to orders and

goals assigned to it at run time. The complexity of tasks in practical applications generally

precludes precompiling plans for all goals in all situations (as proposed by others [31]); hence,

the agent must be able to synthesize new plans at run time in order to achieve its goals.

The dynamic nature of the environment necessitates that the agent be able to deal with

unexpected changes in its world. Agents must be able to react to unanticipated events

by taking appropriate actions in a timely manner, while continuing activities that support

current goals. The unpredictability of the world could lead to failure of plans generated for

individual tasks. Thus, agents must have the ability to recover from failures by adapting their

activities to the new situation. In particular, the ability to modify the plan while continuing

its execution is critical in domains where it is infeasible to halt all execution activities while

replanning.

Finally, the agent should be able to perform all of the above operations even in the face

of uncertainty about the world state. Traditional planning systems typically rely on perfect

domain knowledge throughout plan development and execution [30, 33, 34, 37]. Execution

systems [10, 26, 7] may sense an uncertain world, but rarely model and reason about the

uncertainty. It is necessary to have techniques for representing and reasoning from uncertain

information when developing and executing plans. For example, choosing a subplan for

inclusion into the plan or for execution must often be weighed within the context of uncertain

and partial state information, goals, expected outcomes, and costs of actions.

Many domains of interest require problem-solving agents with the above capabilities.

One domain is controlling a mobile robot. Reactivity is necessary for responding to people

and obstacles that may appear unexpectedly in the robot's path. Deliberative planning is

necessary for purposeful behavior in response to run-time goals. The ability to reason about

uncertainty is necessary for tasks such as self-localization and sensor interpretation. Military

operations provides a second domain. Certainly one would not engage in an undertaking such

as Desert Storm without �rst formulating a strategic mission plan. Reactive response and

failure recovery are necessary for military operations because unexpected equipment failures,

weather conditions, and enemy actions (among others) may require changes to the overall

strategic plan. Reasoning in the face of uncertainty is critical, since complete knowledge for

a given scenario is unlikely.

This paper describes the Cypress system, which provides a framework in which to create

taskable, reactive agents that operate in dynamic and uncertain environments. Cypress

provides a persistent system that can monitor and react to a dynamic environment by invoking

standard operating procedures, by generating and executing plans to meet speci�c goals, and

by applying decision procedures for assessing the situation and selecting among alternative

plans of action. One of the major concerns in the development of the system was to build an
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heuristically adequate tool that would be useful in practical applications.

1.1 Research Strategy

We began with a collection of mature, powerful AI tools that had been tested in numer-

ous demanding applications: the Sipe{2 generative planner, the Prs-cl reactive execution

system, and the Gister-CL system for reasoning about uncertainty. We needed to choose a

research approach bounded by two extremes. One extreme was to develop a completely new

technology that drew upon our experiences in developing the individual technologies. New

data structures would need to be developed to encompass all the information and knowl-

edge required by the di�erent technologies, without sacri�cing e�ciency. A major drawback

to this approach is that interactions among the di�erent technologies would likely lead to

unforeseen problems. The other extreme was to retain the independent systems that imple-

ment these technologies and coordinate their interactions. This approach has the advantage

of building on well-established implementations that have proven useful in practical appli-

cations. Its disadvantage is that individual systems may redundantly, even incompatibly,

implement common reasoning capabilities, information, and knowledge. In addition, if the

individual systems are not modi�ed, then some forms of tight interaction are eliminated from

consideration.

We chose to adopt an intermediate path by which we integrated the component technolo-

gies but also de�ned a common representation language that enables the various systems to

share knowledge. This approach has the advantages of allowing rapid experimentation and

of using established systems with proven practical applicability.

Because of this research strategy, Cypress is a heterogeneous, loosely coupled integration

of Sipe{2, Prs-cl, and Gister-CL.1 Cypress includes a new common representation, ACT,

for encoding plans and plan fragments [41]. The basic unit of representations is an Act, which

can be used to encode both both the planning operators and plans of Sipe{2, and the goal-

and fact-invoked reactive procedures of Prs-cl. There is a graphical knowledge editor for

ACT, translators for converting from Acts to the internal representations of the component

systems, and, in the case of Sipe{2, a translator from internal representations into Acts.

The component systems were extended to cover the more diverse forms of knowledge in Acts

that were motivated by the other systems, leading to the incremental development of a new

composite technology.

1.2 A New Technology

Several features distinguish our approach: (1) the generation and execution of complex plans

with parallel actions, (2) the integration of goal-driven and event-driven activities during

1In particular, CYPRESS = SIPE + PRS. Sipe{2, Prs-cl, ACT-Editor, Gister-CL and Cypress are

trademarks of SRI International. (All other products mentioned are the trademarks of their respective holders.)

Cypress is currently available on Unix workstations running Lucid Common Lisp and CLIM, and all machines

supporting Symbolics Genera software.
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execution, (3) the use of evidential reasoning for dealing with uncertainty, and (4) the use of

replanning to handle run-time execution problems. The replanning capabilities are of partic-

ular note, as Cypress is the �rst system of which we are aware that supports asynchronous

run-time replanning with a general-purpose generative planner. When problems arise during

execution of strategic plans, Cypress can invoke a planning module to produce a new plan

while continuing to execute portions of the plan that are una�ected by the problems. This

mode of operation contrasts with synchronous replanning, in which plan execution is halted

while an alternative plan is generated. Asynchronous replanning is critical in domains such

as military operations or robot control, where it is infeasible to halt all execution activities

while replanning some portion of the overall plan.

While there have been numerous e�orts to develop the component technologies (planners,

replanners, reactive controllers, uncertain reasoners) required for the kind of agent described

here, and even to integrate certain combinations of these technologies, we are unaware of

any current systems that provide the full functionality of Cypress. Several characteristics

distinguish Cypress from other systems that provide both planning and reactive execution.

Many systems do not use general-purpose planning and so cannot generate plans of su�cient

complexity for many application domains. Previous work in run-time replanning has either

been limited to synchronous approaches [19, 36] or focuses on local, adaptive modi�cations to

rule sets, rather than employing the full look-ahead reasoning of a generative planner [26, 7].

The ability to modify a complex, parallel plan at run time and adapt execution activity to

the new plan is, to our knowledge, a new accomplishment. There have been many initial

investigations of planning under uncertainty, but a large technological gap remains between

current planning capabilities and robust planning in uncertain environments. Cypress does

not completely bridge this gap, but it does provide a means for using uncertain information

when making critical planning decisions (e.g., choosing an action or the objects to use in an

action), as well as a framework for evaluating the likely outcomes of a plan that will execute

in an uncertain environment with uncertain e�ects of its actions.

While Cypress does not address all aspects of activity in dynamic and uncertain envi-

ronments, it does provide a powerful system for de�ning taskable, reactive agents that can

operate successfully in challenging domains. We have applied Cypress to a number of de-

manding problems, including real-time tracking, fault diagnosis, and military operations [40].

2 Overview of Cypress

This chapter presents an abstract model of taskable, reactive agents and describes Cypress,

a particular implemented instantiation of this model. After describing the Cypress architec-

ture, we briey summarize each of the major subsystems, describe how a problem should be

approached, and outline an example application.
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Figure 1: Agent Model

2.1 Agent Model

Our agent model has two main reasoning components, an executor and a planner, as shown in

Figure 1. The two components share a library of possible actions that the system can take.

The library encompasses a full range of action representations, including plans, planning

operators, and executable procedures. The executable procedures correspond to prede�ned

standard operating procedures for satisfying individual goals. Each of these three classes of

actions spans multiple levels of abstraction.

The executor is always active, constantly monitoring the world for goals to be achieved or

events that require immediate action. In accord with its current beliefs and goals, the executor

takes actions in response to these goals and events. Appropriate responses include applying

executable procedures stored in the action library, invoking the planner to produce a novel

sequence of actions for achieving a goal, or requesting that the planner modify a previous

plan for which problems have developed during execution. The planner should be capable of

synthesizing sophisticated action sequences that include parallel actions, conditional actions,

and resource assignments.

The planner plans only to a certain level of detail, with the executor taking that plan

and expanding it at run time by applying appropriate library actions at lower levels of ab-

straction. Planning to the lowest level of detail is often undesirable because of the resultant

combinatorics of deep searches. Furthermore, it makes sense only to plan down to abstraction
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Figure 2: The Architecture of CYPRESS

levels at which actions can be reasoned about ahead of time. For example, it is undesirable to

plan large military operations down to the most minute detail since many decisions are con-

ditioned on information that is not available until run time. Rather, it is the responsibility of

the executor to further adapt the plan to the actual state of the world during execution. Sim-

ilarly, it is often undesirable for the execution system to respond to high-level goals without

a plan; for instance, a reactive system should not attempt to implement a Desert Storm-sized

operation by applying procedures blindly.

An additional bene�t to having an executor that can take plans at varying levels of

abstraction and expand them at run time, is that the executor can begin taking actions

towards meeting a goal without having to wait for a completely �nished plan. This ability is

critical for applications in which the amount of time that can be allotted to generating plans

is limited.

2.2 Cypress Architecture

Cypress constitutes a particular framework in which to de�ne taskable, reactive agents based

on the model presented in the previous section. The architecture of Cypress is depicted in

Figure 2.

Cypress is built on top of several mature AI systems that have been tested in a num-

ber of practical applications. The planner is Sipe{2 (System for Interactive Planning and
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Execution), a classical planning system capable of generating plans in a hierarchical fashion

[37, 39]. The executor is Prs-cl (the Procedural Reasoning System), a reactive execution

system that integrates goal-oriented and event-driven activity in a exible, uniform frame-

work [11, 28]. The adequacy of Prs-cl and Sipe{2 for our model of intelligent reactive

agents is discussed in Sections 2.3.1 and 2.3.2. The Gister-CL system implements a suite

of evidential reasoning techniques that can be used during both planning and execution to

analyze uncertain information about the world and possible actions [23, 32]. For example, it

could use uncertain information to choose among multiple planning operators for a goal by

the planner, and to choose among suitable procedures by the executor at run time.

For e�ciency, Prs-cl and Sipe{2 employ their own internal representations for plans

and actions. An interlingua, the ACT representation [41], enables these two systems to share

information. ACT provides a language for specifying actions and plans that is suitable for

both planners and executors. Cypress includes translators that can automatically map Acts

onto Sipe{2 and Prs-cl structures, along with a translator that can map Sipe{2 operators

and plans into Acts. Using the ACT interlingua, Prs-cl can execute plans produced by

Sipe{2 and can invoke the planner in situations where run-time replanning is required.

The ability to de�ne and manipulate plans and operators graphically greatly improves

man-machine interactions. For this reason, the Cypress subsystems share a uniform graphical

interface built on top of the Grasper-CL system [18]. Grasper-CL is a programming-language

extension to Lisp that introduces graphs | arbitrarily connected networks | as a primitive

data type. It includes procedures for graph construction, modi�cation, and queries as well as

a menu-driven, interactive display package that allows graphs to be constructed, modi�ed,

and viewed through direct pictorial manipulation. Grasper-CL is used both as a uniform

basis for the man-machine interface of each subsystem and as a separate subsystem that pro-

vides supplementary graphical editing capabilities. In addition, the ACT-Editor subsystem

supports the graphical creation, manipulation and display of Acts, thus serving as a graphical

knowledge editor for other subsystems.

In contrast to many other agent architectures, planning and execution operate asyn-

chronously within Cypress, in a loosely coupled fashion. The two systems communicate do-

main knowledge, plans, or planning requests by exchanging messages. This approach makes

it possible for the two systems to run in parallel, without interfering with each other. In

particular, the executor remains responsive to its environment during plan synthesis.

2.3 Component Systems

We briey describe the three main component systems of Cypress, namely Prs-cl, Sipe{2,

and Gister-CL.

2.3.1 PRS-CL

Prs-cl is a framework for constructing persistent, reactive controllers that can perform

complex tasks in dynamic environments. It is a successor of PRS [11] that includes many
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capabilities added to support the ACT formalism and the replanning in Cypress [41]. Prs-

cl and its predecessor have proven useful in developing several demanding applications that

required integration of reactive and goal-oriented behavior, including real-time tracking [8], a

monitoring and control system for the Reaction Control System of the NASA Space Shuttle

[10], and a control system for naval battle management aboard a Grumman E-2C [15].

Individual instantiations of a Prs-cl system are referred to as PRS application agents.

A PRS application agent consists of a database containing current beliefs or facts about

the world, a set of current goals, a set of prede�ned procedures (referred to as Knowledge

Areas in PRS) describing how sequences of actions and tests may be performed to achieve

certain goals or to react to particular situations, and intentions that keep track of the current

procedures being executed by the agent. An interpreter manipulates these components, by

selecting appropriate procedures for execution based on the system's beliefs and goals, then

creating the corresponding intentions, and �nally executing them.

A PRS agent interacts with its environment through its database (which acquires new

beliefs in response to changes in the environment) and through the actions that it performs

as it carries out its intentions. While the system is running, it constantly monitors incoming

information and goals. The prede�ned procedures are activated in response to the adoption

of a new goal or to some change in the world. This combination of goal- and data-driven

activity yields a exible, adaptive execution framework. In particular, any intention can be

interrupted and reconsidered in the light of new information about the world. The monitoring

method used guarantees that any new fact or goal is noticed in a bounded time, thus providing

rapid response to new events.2

Multiple PRS agents can be active simultaneously. Each agent has its own local goals,

intentions and database, and runs asynchronously in the overall framework. A message-

passing facility enables communication among agents in order to support parallel, distributed

problem-solving.

Prs-cl procedures support a broad range of action primitives, ranging from testing con-

ditions to achieving subgoals and waiting for events. In terms of control, the procedures

provide conditional branching, iteration, recursion, and parallel action sequences. Proce-

dures are not limited to describing activities in the external world, but can also manipulate

the internal beliefs, goals, and intentions of PRS. Such Metalevel procedures can encode ac-

tions that inuence the operation of the system itself, such as methods for choosing among

multiple applicable procedures, modifying intentions, or computing the amount of reasoning

that can be undertaken given the real-time constraints of the problem domain.

Prs-cl has the properties necessary for the executor component of taskable reactive

agents: it is reactive, integrates goal-driven and event-driven activities uniformly, and has

proven e�ective in numerous applications. The ability to de�ne multiple PRS agents supports

the simultaneous use of multiple instantiations of our abstract agent model, thus enabling

cooperative problem solving among distributed agents.

2The bound on the cycle time is not absolute, but rather depends on the time required to execute the

primitive actions in a given domain.
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2.3.2 SIPE-2

Sipe{2 is an AI planning system that has the properties required by our agent model, includ-

ing the ability to generate action sequences that include parallel actions, conditional actions,

and resource assignments, the ability to modify its plans during execution, and computational

e�ciency that allows practical application. Here we briey describe the system, stressing the

features relevant to Cypress.

Sipe{2 supports partial-order planning at multiple levels of abstraction. It provides a

formalism for describing actions as operators and utilizes knowledge encoded in this formal-

ism, together with heuristics for reducing the computational complexity of the problem, to

generate plans for achieving given goals. Given an arbitrary initial situation, the system

either automatically or under interactive control combines operators to generate plans, possi-

bly containing conditionals, to achieve the prescribed goals. Sipe{2 is capable of generating

a novel sequence of actions that responds precisely to the situation at hand. The generated

plans include information so that during plan execution the system can accept descriptions

of arbitrary unexpected occurrences and modify its plans to take these into account. The

formalism allows reasoning about resources, the posting and use of constraints on planning

variables, and the description of a deductive causal theory to represent and reason about the

e�ects of actions in di�erent world states. In contrast to most AI planning research, heuristic

adequacy (e�ciency) has been one of the primary goals in the design of Sipe{2. Techniques

have been developed for e�ciently implementing each of the features mentioned above.

Operators represent the actions, at di�erent levels of abstraction, that the system may

perform in the given domain. The primary representational task of an operator (from a

planner's perspective) is to describe how the world changes after the action it represents

is executed. Many of the e�ects of actions are not explicitly listed in the operators, since

they are deduced by the system during plan generation from the deductive causal theory

provided for the domain. Since the causal theory will deduce di�erent e�ects depending on

the situation, the operators can be applied in any situation. Without such an ability, a huge

number of operators may be needed since there must be a di�erent operator (with di�erent

e�ects) for every di�erent situation in which an action might be performed.

Sipe{2 provides access to powerful temporal reasoning capabilities. The operator syntax

allows speci�cation of any of the 13 Allen relations [1] or qualitative constraints between

the endpoints of any pair of actions in an operator. A temporal reasoner (TR) is called

as a plan critic by Sipe{2, and the TR propagates these constraints and combines them

with \commonsense" constraints that it represents internally (e.g., that durations cannot

be negative), returning an updated set of time windows that are inserted into the plan. In

the military operations domain, General Electric's (GE) Tachyon system [2] was used as the

temporal reasoner. Tachyon is an e�cient implementation of a constraint-based model for

representing and maintaining qualitative and quantitative temporal information.

This technology is generic and domain-independent, and has proven useful on a large

variety of problems. Example applications include planning the actions of a mobile robot,
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managing aircraft on a carrier deck, containing oil spills, travel planning, construction tasks,

producing products from raw materials under production and resource constraints, and joint

military operations planning [38, 40]. Sipe{2 provides a powerful graphical user interface

to aid in generating plans, viewing complex plans and other information as graphs on the

screen, and following and controlling the planning process [40].

2.3.3 Gister-CL

Gister-CL implements a suite of evidential reasoning techniques that can be used during

plan generation and plan execution to analyze uncertain information about the world and

possible actions [22, 24, 21]. Evidential reasoning includes formal methods for reasoning

under uncertainty, encompassing both probabilistic (i.e., Bayesian and Dempster-Shafer) and

possibilistic models (i.e., fuzzy logic). When complete statistical data is available, Bayesian

conditioning is performed; when incomplete or no statistical data is available, evidential

reasoning techniques relax into Dempster-Shafer reasoning. Evidential reasoning methods

require only a range of values within which the required probabilistic values must lie.

We have developed both a formal basis and a framework for implementing automated

reasoning systems based upon evidential reasoning techniques. Both the formal and prac-

tical approach can be divided into four parts: (1) specifying a set of distinct propositional

spaces (i.e., frames of discernment), each of which delimits a set of possible world situations;

(2) specifying the interrelationships among these propositional spaces (i.e., compatibility re-

lations between frames); (3) representing bodies of evidence as belief distributions over these

propositional spaces (i.e., mass distributions); and (4) establishing paths (i.e., analyses) for

evidence to ow through these propositional spaces by means of evidential operations (e.g.,

translation, projection, discounting, fusion), eventually converging on spaces where the target

questions can be answered. These steps specify a means for arguing from multiple bodies of

evidence toward a particular (probabilistic) conclusion.

Gister-CL is designed as a tool for the domain expert. With this tool, an expert can

quickly and exibly develop an argument (i.e., a line of reasoning) speci�c to a given domain

situation. Gister-CL helps the expert keep track of the complex interrelationships among

the components of his arguments, ensure that the relevant information has been properly

incorporated, and reveal the more tentative aspects of the arguments. Once an analysis has

been established by an expert, it can be instantiated over di�erent situations by nonexperts.

To improve run-time e�ciency, Gister-CL supports the compilation of such analyses into

functions. Gister-CL has been applied to a wide range of problems, including multisensor

interpretation, helicopter mission planning, naval intelligence analysis, underwater vehicle

tracking, and antiair threat identi�cation.

2.4 Anatomy of a Cypress Application

The subsystems of Cypress can be used independently of each other. Thus, users can choose

to run certain of the subsystems but not others. The real advantage of Cypress, however,
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is that it can be used as an integrated planning framework that supports a wide range of

planning and execution activities, including activities that require interactions among the

subsystems. Here, we describe how a user might exercise the full extent of Cypress for a

given application.

The �rst step for any application is to represent the possible actions for the domain. These

actions are de�ned (using the ACT-Editor) as a collection of Acts which can be translated

into the internal operator/procedure representations of both the planner and executor.

A typical use of Cypress to implement a taskable, reactive agent has the executor con-

tinually monitoring the world for additional goals and events that might require action in

response. When a plan is required or requested (perhaps by an event in the world), the

executor makes the appropriate request of the planner. The executor continues to monitor

and respond to the world while the planner plans. The plans generated by the planner are

translated to Acts for execution. The executor executes the plans produced by using Acts at

lower levels of abstraction to perform actions that have not been planned, and invokes the

planner when replanning is required.

Using the operators translated from the ACT representation, the planner generates plans

in response to user-speci�ed goals. The user can optionally instruct the planner to auto-

matically employ the uncertain reasoner to reason about uncertain information while making

decisions in the planning process. In particular, the uncertain reasoner can be invoked to

choose among alternative objects and resources for use in the plan and to choose among

alternative operators that can be applied to achieve a goal, based on user-supplied domain

information. The uncertain reasoner can be called by the executor during plan execution

when so directed by an Act. Thus, the domain programmer indicates those situations in

which the uncertain reasoner should be employed.

Cypress supports run-time replanning. Should an unexpected problem arise during exe-

cution of the plan, the executor recognizes the problem, calls the planner to produce a new

plan, and continues executing those portions of the plan that were not a�ected by the prob-

lem. Upon receiving a new plan, the executor would reconcile it with its current state and

continue execution. Section 4 provides a more complete description of the replanning process.

Cypress has been applied to joint military operations planning, in a manner that parallels

the above description (see Section 7). For this application, the planner uses domain knowledge

in the form of Acts to generate employment and deployment plans for dealing with speci�c

enemy threats, using the uncertain reasoner to choose military units based on uncertain

information about both friendly and enemy units (see Section 5). The plan is translated to

an Act for execution, and the executor employs a suite of lower-level Acts during execution

that de�ne the execution steps for the actions that the planner assumes as primitive. The

executor responds to unexpected events with Acts that encode standard operating procedures.

When execution of the plan reaches an impasse because of some unexpected changes in the

world, it invokes the planner to provide an alternative plan, while continuing execution of

activities not a�ected by the failure.

A critical issue in any application is dividing responsibility between the planner and
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executor. In principle, each can execute Acts at any level of abstraction. In practice (as

described in Section 2.1), the planner should not plan to the lowest level of detail and the

execution system should not execute very abstract actions, unless forced to do so by time

limitations. For these reasons, a �xed level of abstraction is speci�ed for each application

that serves as an interface level between planning and execution. The planner plans down

only to the interface level, while the executor will accept plans at that level and attempt to

execute them using actions from that level of abstraction or below. Information is encoded

in the Acts themselves to indicate whether they should be used by the planner and/or the

executor. It would certainly be preferable to provide a exible level of interaction between

the two subsystems that changes depending on the circumstances. For example, the planner

would determine the number of levels deep for which planning is pro�table, while the executor

would decide when it is appropriate to simply execute Acts rather than invoke a planner. We

hope to add such exibility to the system in the near future.

For the military operations domain, nine levels of abstraction are employed in representing

domain actions. The planner plans through �ve levels of abstraction, at which point actions

are at the level of deploying forces, mobilizing units, and establishing patrols.3 The executor

employs Acts from the remaining four levels of abstraction during execution. There are

no recursive operators in these levels; thus, the executor performs at most four levels of

subgoaling for this domain.

3 A Common Representation for Planning and Execution

In order to integrate the various subsystems within Cypress, a common representation was

required for describing actions and plans. Development of an interlingua that enables multiple

reasoning systems to cooperate on di�erent aspects of the same problem is a central challenge

for the �eld of arti�cial intelligence. Since a narrow focus is critical to achieving success in

terms of near-term use in software tools, we address the restricted case of a common language

for planning and execution systems. Section 3.1 focuses on the issues involved in developing

a common representation, while Section 3.2 summarizes our common representation.

3.1 Planning vs. Execution

Planners and executors share many representational requirements. At the heart of both

plan generation and execution is the need for a language in which to express beliefs and

goals. Such a language provides the basis on which to build representations of actions,

plans, and operators. Goals having di�erent modalities are important to both classes of

systems, including goals of achievement, testing, and maintenance. Other common necessities

are protection intervals for goals of maintenance, resources, the notion of applicability of a

procedure or operator, and information required for deductive reasoning.

3Note that the planner may generate many more levels of plan re�nement, but the level of description

changes only �ve times.
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Nevertheless, there are important representational di�erences for the two classes of sys-

tems because of their di�erent functionalities. Planners explore a search space to generate a

partially ordered set of activities designed to satisfy a particular goal. Executors are designed

to respond to new goals and information and take appropriate steps as a consequence. They

are expected to be embedded in the real world, and typically employ a single world model

corresponding to the actual perceived state. In contrast, planners must reason about hypo-

thetical future states that would result from taking certain actions. This distinction between

a single world state versus numerous hypothetical states impacts how these systems respond

to failures and model the world.

Failure has di�erent meanings for the two classes of systems. Failure for planners means

that a plan (or partial plan) that has been constructed is not suitable. Planners have several

options; they can backtrack to consider alternative plan choices, or employ various algorithms

to modify the plan and eliminate the failure (e.g., there are algorithms to eliminate resource

conicts). Failure has di�erent consequences for executors since they are taking actions in the

world. Thus, failure generally indicates that the current set of activities should be aborted,

but it is di�cult to determine the most appropriate response. Thus, executors will need to

encode procedures, unnecessary to planners, that will allow recovery from failure states.

Other di�ering operational characteristics also impact any common representation. Ex-

ecutors do not reason ahead about the consequences of their actions. As a result, many

executors contain some form of reective reasoning that allows them to reason about current

activities in order to decide on future actions. From a representational perspective, such re-

ective reasoning requires the means to represent notions of system goals and activity within

the representation language. Planners don't require such facilities, as they have no corre-

sponding need for reective reasoning. While a planner could control its search by reective

reasoning, most AI planners have specialized search engines to quickly change focus in the

search space.

Planners proceed from a �xed initial state, while executors operate in environments that

are highly dynamic and may change in unpredictable ways during execution. Executors must

be able to respond to such changes in a timely fashion, and therefore require the ability to

represent event-driven behavior. Executors will need knowledge, unnecessary to planners,

about how to respond to events as they occur.

Planners and executors rely on di�erent kinds of action sequences. Executors rely on con-

structs such as conditional actions and iteration, while planners emphasize parallel execution.

Parallel execution is often ignored in executors; for example, Prs-cl supports parallel exe-

cution of actions within a procedure, but PRS does not. An adequate shared representation

of actions for planners and executors must support all of these sequencing operations.

3.2 The ACT Formalism

The ACT formalism is a domain-independent language for representing the kinds of knowl-

edge about activity used by both plan generation and reactive execution systems. A full
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presentation of the ACT language can be found elsewhere [41]. Here, we summarize the main

features of the language.

An Act describes a set of actions that can be taken to ful�ll some designated purpose

under certain conditions. The purpose could be either to satisfy a goal or to respond to some

event in the world. The purpose and applicability criteria for an Act are formulated using

a �xed set of environment conditions. Action speci�cations are called the plot of an Act,

and consist of a partially ordered set of actions and subgoals. The environment conditions

and plot subgoals are speci�ed using goal expressions, each of which consists of one of a

prede�ned set of metapredicates applied to a logical formula. The metapredicates permit the

speci�cation of many di�erent modes of activity, including goals of achievement, maintenance,

and testing.

3.2.1 Goal Expressions

Goal expressions describe requirements on the planning/execution process and desired states

to be reached. They consist of an ACT metapredicate applied to a logical formula built from

predicates speci�ed in �rst-order logic, connectives, and the names of Acts. The predicates

describe possible goals and beliefs of the system. Goal expressions are used to specify both

applicability conditions for environment conditions and subgoals for plot nodes. The interpre-

tation of the goal expression can vary slightly, depending on whether it is in an environment

condition or plot node (see Section 3.2.2). Here, we provide an approximate reading for the

meanings of the metapredicates.

The Test metapredicate speci�es a formula whose truth value must be ascertained. The

Use-Resourcemetapredicate makes a declaration of resources that will be used by the Act, and

hence that must be available for an Act to be applied. Three metapredicates can be thought of

as specifying actions: Achieve, Achieve-By, and Wait-Until. Achieve metapredicates direct

the system to accomplish a goal by any means possible; the Achieve-By metapredicate is

similar but speci�es a restricted set of Acts that can be used to accomplish the task. Wait-

Until directs the system to wait until some speci�ed condition holds. The Require-Until

metapredicate designates conditions that must be maintained over a speci�ed interval. The

Conclude metapredicate designates changes in the world caused by an action.

3.2.2 ACT Environment Conditions

The ACT environment conditions are de�ned as a series of �xed slots, shown in Table 1.

Name and Comment are straightforward; the former is a unique identi�er for the Act, and

the latter is a string that provides documentation. The slots Cue, Precondition, Setting,

and Resources are referred to as the gating slots for an Act because they specify conditions

that must be satis�ed in order for the Act to be applicable in a given situation. The gating

slots are �lled with one or more goal expressions. The environment conditions are discussed

in detail below, including an explanation of what it means for a condition to be satis�ed.

Table 2 displays the metapredicates allowed in each of the gating slots.
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Environment Slot Role

Name identi�er

Cue used to e�ciently retrieve this Act

Precondition gating conditions on applicability of this Act

Setting queries world to bind local variables

Resources resource constraints

Properties user-de�ned attributes, temporal constraints

Comment documentation

Table 1: Environment Conditions and Their Roles

Gating Slot Metapredicates

Cue Achieve, Test, Conclude

Preconditions Achieve, Test

Setting Test

Resources Use-Resource

Table 2: Metapredicates Allowed in Gating Slots

Cue

The Cue indicates the purpose for which the Act can be used. The Cue can contain either an

Achieve, Test, or Conclude metapredicate. An Achieve metapredicate in the Cue indicates

that the Act can achieve some condition { that is, it can be used for subgoaling. A Test

metapredicate indicates that the Act can actively test some condition. Active testing is

important for situations where the truth-value of a formula needs to be attained, but the

information is not contained in the system database. For example, one might create an active-

test Act for a procedure to obtain a sensor reading. A Conclude metapredicate indicates that

the Act should be invoked when a matching formula is added to the database, thus reacting

to events that arise during the course of execution. Execution systems may require short cue

speci�cations so that potentially applicable Acts can be rapidly identi�ed.

Precondition

The Precondition slot speci�es situational constraints that must be satis�ed for the Act to be

applicable. It can contain both Achieve and Test metapredicates. The meaning of (TEST P)

in the Precondition is that P must be true in order for the Act to be applied. The meaning

of (ACHIEVE G) is that the system must currently have G as a goal in order for the Act to be

applied.
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Setting

The Setting speci�es additional Test metapredicates for the applicability of an Act. This

slot is equivalent functionally to the Precondition slot but typically is used to separate out

those conditions whose purpose is to instantiate variables.4 The Setting is separated from

the Precondition to make the Act more easily understood.

Resources

The Resources slot indicates resources that are to be allocated for the duration of the Act.

This slot can be �lled only with the Use-Resource metapredicate. For an Act containing an

expression of the form (USE-RESOURCE (A B C)) in its Resources slot to be applied, it is

necessary that the resources (A B C) be free. These resources would then be unavailable for

use by other processes until execution of the Act �nishes.

Properties

The properties slot is a list of property/value pairs for the Act. Properties are used for

several purposes: to provide documentation, to represent information speci�c to a par-

ticular application or planning/execution system, and to represent knowledge that is not

directly supported in ACT, generally because it is needed by either the planner or the ex-

ecutor, but not by both. The most interesting property from a representational standpoint

is Time-Constraints, which allows speci�cation of any of the 13 Allen relations [1]. This

property is used to specify time constraints between plot nodes that cannot be represented

by ordering arcs, e.g., two actions must end at the same time. The user is free to supply

additional properties, as desired.

Figure 3 presents an example Act. The environment conditions are displayed on the left

side of the screen and the plot nodes on the right side. This Act describes an operator for

deploying an air force to a particular location. The Cue is used to invoke the Act when the

system has the goal of achieving such a deployment. The Precondition enforces various con-

straints on the intermediate locations to be used in the deployment. The Setting essentially

looks up the cargo that must go by air and sea for this deployment. The plot is described in

Section 3.2.3.

3.2.3 Plots

The plot speci�es the activities for accomplishing the purpose of an Act. The plot consists

of a directed graph, whose nodes represent actions and whose arcs impose a partial order

for execution. (Any temporal relationship between two nodes can be represented using the

Time-Constraint property.) Associated with each plot node is a list of goal expressions for

the node. All ACT metapredicates can be used in plot nodes.

4O-Plan refers to such conditions as \query conditions" [6].
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Figure 3: Deploy Airforce Act
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A plot has a single start node (a node with no incoming arcs) but may have multiple

terminal nodes (a node with no outgoing arcs). Loops can be speci�ed by connecting the

outgoing arc of one node to an ancestor node in the graph. Execution of a plot requires

successful execution of all nodes along some path from the start node to some terminal node.

Successful execution of a node requires satisfaction of all of the node's goal expressions.

Plot nodes come in two types, conditional and parallel. Conditional nodes are drawn as

single-border rectangles, and parallel nodes are drawn as double-border ovals. In Figure 3,

nodes P503 and P512 are parallel, while all other nodes are conditional. Arcs coming into and

going out of a parallel node are conjunctive, meaning that all of the arcs need to be executed.

During planning, all branches are inserted into the plan as unordered subplans. Arcs coming

into and going out of a conditional node are interpreted as disjunctive, meaning that only

one of the arcs need be executed. Consider �rst a disjunctive node with multiple successor

nodes. A planner produces a conditional plan following this node. An executor executes

the successor nodes until one is found whose goals are satis�ed. At that point, execution

`commits' to the branch headed by that successor node and ignores all other branches. A

disjunctive node with multiple incoming arcs can be executed as soon as one of its ancestor

nodes has been successfully executed.

Consider the plot of the Deploy Airforce Act from Figure 3. The start node, P503, speci�es

that the air force is to be mobilized. Since it is a parallel node, its successors can be invoked

in either order or at the same time. The successors specify that the air cargo will be moved

to the �nal destination in parallel with moving the sea cargo to two intermediate ports and

�nally to the �nal destination. The �nal node joins the parallel actions, posts conclusions

about the locations of the air force and its subparts, and cannot begin execution until both

of its incoming branches have completed.

4 Asynchronous Run-time Replanning

By itself, Prs-cl provides a certain amount of exibility at run time through its ability to

adapt plan execution to the current state of the world. As an example, it can choose among

multiple Acts to satisfy a given goal, depending on run-time conditions. Prs-cl can also be

made to recover from certain kinds of failures. For instance, it includes a repair facility for

recovering from protection failures (i.e., failures to maintain some speci�ed condition over

a designated time interval) through the use of domain-speci�c repair routines [28]. These

adaptive mechanisms make Prs-cl a exible execution system. However, the mechanisms

are local in nature in that they can only adapt the plan execution in response to the cur-

rent situation. They do not su�ce for handling failures that require more strategic changes

in planned activity. Modi�cations of a more global nature need the look-ahead reasoning

capabilities of a generative planning system.

To this end, we have added a domain-independent run-time replanning capability to

Cypress, which allows Prs-cl to invoke Sipe{2 to perform replanning for failures that cannot

be corrected locally by application of prede�ned Acts. Replanning proceeds in the following
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manner:

1. Prs-cl detects an irrecoverable failure during plan execution.

2. Prs-cl communicates the current state of execution to Sipe{2, then continues execut-

ing those parts of the plan that are una�ected by the failure.

3. Sipe{2 invokes its replanner to produce an alternative plan.

4. The new plan is translated to an Act and forwarded to Prs-cl.

5. Prs-cl merges the new plan with its current activities and continues execution.

The second step above highlights an important characteristic of our replanning framework,

namely its asynchronous mode of operation. For asynchronous replanning, plan execution

continues on those branches of the plan that are not a�ected by the failure. This mode of

operation contrasts with synchronous replanning, in which plan execution is halted while an

alternative plan is generated. Asynchronous replanning presents greater technical challenges,

the most critical of which is to reconcile the state to which plan execution has progressed

during generation of a new plan with the new plan itself. Asynchronous replanning is critical

in many domains, since it is infeasible to halt execution while replanning occurs for some

parts of the plan.

4.1 Architecture

Our basic model for replanning is bottom-up in nature, being driven by the activities of the

executor. The executor is responsible for recognizing failure situations for which replanning is

appropriate, requesting new plans from the planner, and �nally implementing the new plan.

We developed a transformational approach to replanning whereby the activities in the

original plan are left unmodi�ed when possible. In particular, the planner modi�es the failed

plan during replanning rather than generating a completely new plan, and the executor

continues execution of threads in the original plan that are una�ected by the failure while

replanning takes place. This approach contrasts with many existing methods that simply

abort execution of the old plan upon failure, then begin execution of a new plan. The

transformational approach has the advantage of preserving undisturbed those activities in

progress that remain part of the new plan. This property is essential in domains where it is

infeasible to halt all execution activities while replanning some portion of the overall plan.

An application PRS agent initiates the replanning process upon detection of a failure

that it recognizes as replannable. (The criteria for deciding when to replan are discussed

in Section 4.2.) All requests for replanning are forwarded to a special PRS agent named

Replanner that performs the necessary communication with Sipe{2, thus enabling the agent

that requested replanning to continue execution of those parts of the plan that are una�ected

by this failure. The Replanner agent is identical to other PRS agents; its specialized behavior
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Figure 4: Replanning Architecture

results from the speci�c set of Acts that it executes. The architecture for the replanning

framework is depicted in Figure 4.

The message sent to the Replanner agent indicates the name of the application agent

requesting the replanning, a unique identi�er for this particular failure episode, the plan

being executed, the failed goal, and the execution front. The execution front is a list of the

nodes last successfully executed on each parallel thread of the plan. The Replanner agent

also sends Sipe{2 relevant information from its database that characterizes the current world

state. Without such updates, Sipe{2 could generate plans only for the original state rather

than the state in which the failure occurred, since it does not monitor the world during

execution. The Replanner agent then awaits a response. In general, Sipe{2 will reply with

a new plan that addresses the failure. The new plan is forwarded to the PRS agent that

requested the replanning, which then integrates it with its current activities. If no new plan

can be generated, the Replanner noti�es the requesting PRS agent, which in turn terminates

its execution of the original plan (that is, it gives up trying to accomplish the original goal).

When issued a replanning request, Sipe{2 responds by trying to modify the failed plan

rather than producing a new plan from scratch. Doing so is often more e�cient in practice

(despite the computational complexity of the problem [29, 17]), since only limited changes

are generally needed to �x the original plan. Sipe{2 begins by simulating the original plan

through the execution front, then comparing its expected world state with the actual state

provided by Prs-cl. Sipe{2 collects those formulae not expected to be true and determines

how they a�ect the failed plan. The plan is modi�ed to eliminate any problems by deleting

unnecessary subplans and inserting new goals [37]. The planner ensures that the future

consequences of the new plan do not interfere with the still-active execution threads.

One of the key technical di�culties in developing the replanning capability was integrat-

ing the revised plan with the current activities of the executor. This problem is further

complicated for asynchronous planning, since execution of the original plan continues while

the new plan is generated. To this end, Sipe{2 provides Prs-cl with both a new plan and

a node map. The node map is a mapping from nodes in the original plan that have been

changed or removed to continuation nodes in the new plan. The mapping encodes su�cient

information for Prs-cl to transform its current activities during transfer of control to the

new plan. Actions/subgoals being executed from nodes that are not in the node map are
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not a�ected and continue execution. For a node mapped by the node map, Prs-cl aborts

the associated activities, and begins execution at the corresponding continuation node in the

new plan.

4.2 Failure Recognition

Not all execution failures warrant replanning. Some failures are a normal part of plan execu-

tion, or can be repaired by various local recovery techniques. For this reason, only failures at

the highest level of the executor (that is, in the plans produced by the planner) that cannot

be repaired locally are considered for triggering replanning.

Execution failures come in di�erent types, depending on the nature of the goal(s) that has

failed (here, we use the term goal in a generic sense to denote an objective of the execution

system). Our replanning focuses on failures for the most common types of goals used in

Sipe{2 plans: goals of testing that some expected condition in the world holds (represented

by Test metapredicates in ACT) and goals of achievement (represented by the Achieve and

Achieve-By metapredicates in ACT).

A test goal is considered to have failed by the executor when the condition being tested

does not hold and no ACTs can be executed that will make the condition true. The plan-

ner inserts a test goal into the plan for the precondition of each ACT that is used during

plan generation to ensure that it is appropriate to execute the subplan generated from this

ACT. Failures of these goals arise because the world has changed in some way that was

not anticipated by the planner. For example, when the Deploy Airforce Act from Figure 3

is used to generate a plan, a plot node with a Test metapredicate for the precondition of

that Act will precede the plot nodes generated from this Act. In particular, this Test would

include predicates requiring transit approval for the destination seaport and air�eld. These

transit approvals held at planning time or this Act would not have been applied. If, during

execution, the transit approvals are rescinded, Prs-cl would detect an unrepairable failure

before beginning execution of the part of the plan generated from the Deploy Airforce Act.

In general, replanning could either plan some action to re-establish the transit approvals, or

replace the deployment by using a di�erent set of actions that did not require these tran-

sit approvals. Sipe{2 does the latter, in accordance with its philosophy that conditions for

subgoaling should be encoded as goals in the plot and not preconditions.

An achievement goal fails when the condition to be achieved does not hold and there are

no Acts that can be executed to make the condition true. In the Deploy Airforce example, a

failed achievement goal would occur if Prs-cl could not �nd lower-level ACTs to execute to

achieve the goal of moving the cargo to the destination seaport. Replanning could generate

a new plan for achieving the goal (using Acts unavailable to the executor), plan to get a

di�erent but su�cient cargo to the seaport, or replace a larger part of the plan that included

the failed goal. Sipe{2 may do any of these.
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5 Planning under Uncertainty

Agents that operate in dynamic and unpredictable environments must be able to cope with

uncertain information. There are several di�erent sources of uncertainty. First of all, it

is often impossible to characterize the current state of the world with complete accuracy.

Imperfections in the domain knowledge can compound this situation, by adding inaccuracies

to the expected outcome of actions. As well, external events may alter the world state in

unanticipated ways.

There are several ways in which explicit reasoning about uncertainty can be valuable for

taskable, reactive agents, including initial situation assessment, Act selection, Act parame-

terization, and plan evaluation.

Situation Assessment. Both planners and executors perform better when the current

world state is understood. It is rare in practical applications that the state can be char-

acterized with complete certainty. Typically, the initial assessment must be based upon

interpreted sensory information and best estimates that pertain to di�erent aspects of the

overall situation. The sources are generally fallible and not necessarily current. Therefore,

it is important that the available evidence be pooled to lead to a consensus. Even then, the

consensus is typically incomplete and uncertain.

Act Selection. Uncertain reasoning can be used by a planner in selecting the operators to

use during plan synthesis and by an executor in choosing the procedures to execute. Infor-

mation that indicates whether the preconditions of competing Acts have been satis�ed may

be partial and uncertain to varying degrees. For example, in generating a plan to deter a mil-

itary threat, it may be necessary to decide among di�erent types of deterence operators. The

choice may depend on several uncertain factors, such as the readiness, availability, location,

and expected costs and bene�ts of using a particular force. The operator with the highest

likelihood of success, given the available information, would be selected for application.

Act Parameterization. Once an Act has been chosen for use, there may be a number of

possible objects to use in instantiating it. Uncertain reasoning can assist in this process.

Plan Evaluation. Another application of uncertain reasoning is to evaluate plans in the

context of an uncertain environment. Uncertain reasoning can be used to predict the prob-

abilistic results of executing a plan given that neither the initial state of the world nor the

e�ects of applying operators (in known states) are known with certainty. Plan evaluation is

useful during planning as a means of comparing alternative plans and during execution in

selecting the plan most likely to succeed.

The above examples illustrate why it is important to have techniques for representing

and reasoning from uncertain information when developing and executing plans. Gister-CL

is particularly useful for performing these uncertain reasoning tasks because of its ability
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to function in situations where limited probabilistic information is available. In an analysis

developed to estimate the relative strength of military units (described below), a number of

key indicators are combined to arrive at an overall assessment. Since these indicators include

the morale of the troops and the readiness of their equipment, it is obvious that only limited

information is available, particularly when evaluating a relatively unknown opposing force.

For some indicators, no relevant information will be available, for others, limited information

will justify only rough probabilistic bounds, while for others, adequate experience may justify

precise probabilistic estimates. Whatever the available information, Gister-CL will calculate

results whose precision is commensurate with the available information; that precision will be

captured in the resulting probabilistic bounds which make clear to the decision maker what

is objectively known.

We have used Gister-CL within Cypress to aid in Act parameterization and plan evalua-

tion, as described in the next two sections respectively. Gister-CL could also be applied to

reasoning about the likelihood of success in applying Acts, although we have not yet made

use of that ability.

5.1 Operator Parameterization in Cypress

In our military application, Cypress uses its evidential reasoning capabilities to choose param-

eters for Acts being used by the planner. Constructing plans that use the most appropriate

military units to carry out prescribed missions is important to the overall success of the mis-

sion. The choice of the most appropriate unit will typically depend on several factors that

range from the availability, readiness, �repower, and so forth to the type of enemy forces

expected to be encountered. The choice is di�cult because there is generally uncertain in-

formation about the relevant factors. We describe how selecting an appropriate Army unit

to carry out a speci�ed mission is currently accomplished in the Army, and then describe the

use of Gister-CL for automating this process.

Selecting a unit to carry out a particular mission is currently a highly manual process that

involves assessing and then comparing the perceived strength of friendly and enemy forces.

A unit is chosen based on whether it meets or exceeds speci�ed force-strength requirements.

For example, to carry out a deterent mission, sound military practice suggests that the ratio

of friendly to enemy force strength be greater than or equal to two. For attack missions, the

ratio should be greater than or equal to three. A unit's strength is based on the combined

assessments of di�erent characteristics that include

� Troops: The degree to which the unit has its full, ready complement of personnel

� Armament: The type and extent to which the troops are armed

� Tradition: The degree to which the current mission is the type of mission the unit has

traditionally fought

� Equipment: The type and operational status of the unit's equipment
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� Transport: The type and readiness of transportation required

� Posture: The proximity of the unit to where it needs to be deployed

� Morale: The morale of the troops assigned to the unit

� Training & Experience: The amount and type of training and experience the unit

has for this type of mission

� Mobility: The degree and speed with which the unit can be relocated

Friendly as well as enemy unit forces have an associated \base-strength" value, which,

in some sense, represents the power of a unit given no de�ciencies with respect to its char-

acteristics. If a unit has its full complement of troops, armament, equipment, and so forth,

then the unit can be said to be at its designed level of strength. Intuitively, de�ciencies in

one or more characteristics should be reected in terms of a reduction in a unit's overall

strength. Expressing de�ciencies is traditionally done in terms of a \force multiplier" (FM)

that is associated with each characteristic. One commonly used method for computing over-

all strength involves multiplying the FMs and the unit's base-strength value. In practice, it

is impossible to precisely assess characteristics of even friendly, much less enemy, forces. At

times a range of FM values may be more representative of what is known and at other times,

a probability distribution may be the best representation. This full range of expression is

available in Cypress.

Gister-CL can be used to straightforwardly automate the selection process. Unit selection

involves �rst comparing the perceived strength of friendly and potential enemy forces, and

then selecting a unit based on the degree to which a unit meets or exceeds prespeci�ed

strength-ratio requirements. Doing so within an evidential reasoning framework requires

constructing frames of discernment and relationships between them for both friendly and

enemy unit forces. The frames and compatibility relations are represented as a graph, called

a gallery. A frame is constructed that represents the nominal \base" strength for each unit,

and other constructed frames represent the FM assessments of other force characteristics.

We constructed these frames in a gallery as shown in Figure 5. Frames corresponding to a

friendly force begin with \F", and frames corresponding to an enemy force begin with \E".

Relationships between the frames are represented by connecting arcs called compatibility

relations, which compute the result of combining frames. In our example, compatibility

relations are often multiplicative. However, some are not. For example, the relative �repower

of a unit depends on the relative values of its constituent Troops and Armament FM values,

and is, in our implementation, the maximum of the FM values in the Troops and Armament

frames. The reason for this dependence is that even if a unit does not have its full complement

of troops, the remaining troops may have su�cient armament to balance de�ciencies in troops.

Conversely, a unit may have su�cient troops to balance de�ciencies in armament.

Given a set of FM estimates for a subset of friendly and enemy characteristics, a Gister-

CL analysis pools these independent estimates, according to the compatibility relations in
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Figure 5: Gister Gallery for Army Unit Selection

Figure 6: Result of Degree to Which Unit Meets Force Ratio Requirements
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the gallery, to arrive at a consensus for each unit's strength. Generally speaking, each esti-

mate may consist of a probability distribution over FM interval values; when no estimate is

available, the full FM interval is attributed unit belief; when complete knowledge is available,

unit belief is attributed to a precise FM value. Depending on the certainty and precision of

the inputs, the certainty and precision of the consensus will vary. For example, an analysis

of the characteristics of a particular unit for a deterent mission against a particular enemy

force results in the distribution shown in Figure 6.

5.2 Plan Evaluation in Cypress

As previously discussed, plan evaluation involves predicting the probabilistic results of ex-

ecuting a plan given that neither the initial state of the world nor the e�ects of applying

operators (in known states) are known with certainty. Such evaluations could be utilized by

the execution system to select those procedures for execution that are most likely to achieve

their intended goals or by the planner to compare alternative plans.

Cypress employs the planner's logical reasoning capabilities in support of probabilistic

reasoning. The planner provides the logic used by the probabilistic reasoner during plan

evaluation, with several advantages. Briey, these advantages are compactness of represen-

tation, the planner's e�ciency when determining the truth of a proposition in a world state

obtained by executing a parallel plan, and the ability of the planner to generate plans auto-

matically when the probabilistic reasoner eventually asks that goals be satis�ed rather than

that operators be applied.

Gister-CL has two distinct subsystems that perform di�erent types of reasoning. One sub-

system focuses on numeric calculations relating to probabilities; the other subsystem performs

logical calculations relating to possibilities. As probability distributions are manipulated by

the �rst component, logical questions are posed to the second component. The implementa-

tion of each of these components is independent of the other, so long as the logical questions

posed by the numeric component are answered by the logical component. Gister-CL includes

several di�erent implementations for the logical component (e.g., implementations based on

sets, bit vectors, and the real numbers). The most appropriate one to use depends upon the

characteristics of the domain of application. Other logical implementations are easily added

by de�ning methods (invoked by calls to generic functions) for the logical connectives and

other constructs comprising the logical questions.

We have implemented a Sipe{2 logic for the logical component and have tested it by

evaluating plans in the context of uncertain initial states and probabilistic operators. When

Gister-CL evaluates plans, this logic provides the algorithms and representations for deter-

mining whether a proposition is true in a world state, for determining whether two world

states are equivalent, and for deriving new states using compact planning operators. World

states are represented as nodes in plans that are created by the planner in response to re-

quests from Gister-CL to perform actions. Gister-CL represents an incompletely speci�ed

world state as a set of plan nodes and an uncertain world state as a probability distribution
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over (possibly incomplete) world states.

Gister-CL needs to query the truth of propositions in speci�c world states. In our imple-

mentation, propositions and world states are given to the planner, which simply applies its

truth criterion to the proposition at the plan node. (The truth criterion uses the whole plan

in which the node is embedded to compute its result.) In an incompletely speci�ed state,

checking the truth of a proposition or determining its probability will result in several such

calls to the planner, one for each node in the set of plan nodes representing the incomplete

state information.

The planner derives one world state from another by using its operators, as requested by

Gister-CL, to elaborate plans. The plan node representing the requested state is returned.

Since the same request may be made several times, Sipe{2 keeps track of all expansions and

returns an already constructed plan node whenever appropriate. To apply an action to an

incompletely speci�ed world state, the planner is called to apply that action to each of the

states that make up the incomplete speci�cation.

The discussion to this point has focused on plan evaluation when the initial (and therefore

subsequent) state of the world is uncertain. Another source of uncertainty that needs to be

taken into account is the nondeterministic nature of many real-world operators. We represent

nondeterministic operators using distributions over deterministic operators. The distribution

indicates the frequency by which the nondeterministic operator functions as if it were var-

ious deterministic operators. This representation has the advantage of being grounded in

deterministic operators, the type of operators that Sipe{2 was designed to manipulate. To

predict the e�ect of a nondeterministic operator when applied to a known state, Gister-CL

simply substitutes the corresponding distribution of deterministic operators. If the initial

state is itself uncertain, then the operator distribution is applied to all of the possible initial

states and the probabilities of the states are multiplied by the probabilities of the operators.

Assuming that the nondeterministic nature of the operators does not vary depending on what

operator applications have preceded them, then a sequence of nondeterministic actions can

be modeled through sequential application of these nondeterministic operators.

In summary, Cypress can evaluate plans in the presence of nondeterministic operators

and uncertain initial states. More details are provided elsewhere [25]. This capability was

produced by implementing a Sipe{2 logic within Gister-CL; it did not require substantial

changes to either system. Plan evaluation in Cypress demonstrates an e�ective combination

of planning and uncertain reasoning technology, exploiting the strengths of each.

6 Human Computer Interaction

In practical applications, plans and domain knowledge are often highly complex. A graphical

interface is often essential to inputing operators, understanding generated plans and domain

knowledge, and monitoring system behavior. Without natural pictorial representations of

the knowledge and the resulting plans, it would be nearly impossible for a human user to

understand the domain knowledge, the plan, the planning process, or the execution of the
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plan. For persistent agents to be practically useful, signi�cant and important research issues

must be addressed in this area. Since this is not the major focus of this paper, we briey

describe the approach taken in Cypress, without analyzing in depth the strengths, weaknesses,

or alternatives.

As described in Section 2.2, we have implemented a powerful graphical user interface

(GUI) for interacting with Cypress based on the Grasper-CL system.5 In the GUI, plans are

represented as PERT-chart style graphs, and domain knowledge is presented in many ways,

from pop-up windows with formatted tables, to graphs representing trees. Many options are

provided for labeling and sizing the nodes in any particular graph.

The Cypress GUI is a signi�cant improvement on the GUI of any previous domain-

independent planning/execution systems of which we are aware. Because of the domain

independence of our system, we chose a graph-based representation. We feel that signi�cant

improvement on a graph-based GUI generally requires use of domain-dependent features in

the interface, since the plans produced and the important features in them vary widely from

one application to another. For example, the preferred user interface for viewing plans in

military operations planning is a map with icons moving on it, while Gantt charts are a

popular interface for scheduling production lines.

New GUIs were developed for all Cypress subsystems in order to provide a uniform

interface for Cypress. The subsystems are controlled through noun menus and command

menus. Selecting a noun brings up a menu of commands appropriate to that noun. For

example, Sipe{2 has �ve nouns that let the user choose the level at which the commands

will operate, as described in Section 6.2. The other subsystems have their own nouns and

command menus in the same style.

Plan drawings often do not �t on the screen in their entirety, and are di�cult to visualize.

The GUI provides several techniques for viewing them. The graph window is scrollable, so

the user can pan over the whole plan. In addition, there are numerous tools for navigating

through large graphs. A birds-eye-view window provides a low-resolution view of the entire

graph. This window can control the scrolling of the full-resolution window, and the user

can query graph relationships in the birds-eye window. The GUI also provides the ability to

display a truncated subtree of a large graph, and to incrementally expand or collapse nodes

within the subtree to walk through regions of interest in the graph. Thus, one can use the

low-resolution view of a graph to select the region for high-resolution browsing. Important

GUI features of the individual subsystems are described below.

6.1 ACT-Editor

The ACT-Editor is a graphical knowledge-editor for creating, displaying, and manipulating

Acts. It provides knowledge-editing capabilities for both Sipe{2 and Prs-cl. A user can

create or modify an Act by selecting the appropriate actions from the menu; the ACT-Editor

will prompt for all necessary information. Figure 7 shows the graphical display of an Act and

5Grasper is a trademark of SRI International.
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Figure 7: Plot of Deploy Airforce Act
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the commands available for acting on individual slots and plot nodes. In this �gure, the user

has clicked the Examine command and then clicked the �rst node of the plot. The resulting

pop-up window allows the user to edit any of the metapredicates on that node | currently

Achieve-By is the only metapredicate on node P0216. For example, additional e�ects of the

mobilize action could be added under the Conclude metapredicate.

In practical applications, Acts can be complex. In particular, ACT representations of

Sipe{2-generated plans are often quite large: for example, a typical plan in the military

domain produces an Act with over 200 plot nodes. Two capabilities in the ACT-Editor reduce

the complexity of manipulating and viewing Acts: a simpli�er and the New View command.

The simpli�er streamlines the logical structure of an Act, eliminating both unnecessary plot

nodes and redundant ordering links. These simpli�cations produce Acts that are semantically

equivalent, are often more compact, often make their intent more apparent, and can lead

to improved plan execution performance. The New View command does not modify the

structure of an Act but rather modi�es its presentation on the screen. A user can vary the

amount of detail to be presented on each plot node | an essential feature since plot nodes

generated by Sipe{2 often have several metapredicates with large goal expressions.

6.2 SIPE-2

Sipe{2 provides a powerful graphical user interface to aid in generating plans, viewing com-

plex plans and other information as graphs on the screen, and following and controlling the

planning process [40]. Here we briey mention some of the capabilities that were useful in

military operations planning.

Sipe{2 has �ve nouns that let the user choose the level at which the commands in the

current command menu will operate. The PROFILE noun activates commands for setting

defaults that allow the user to customize system behavior. The DOMAIN noun activates

commands that apply to the problem domain as a whole, e.g., inputing and inspecting the

domain knowledge. The PLAN noun activates commands that apply to a speci�c plan, in-

cluding executing a plan and generating a plan either interactively or automatically. The

DRAWINGS noun activates commands that draw various Sipe{2 structures as graphs. Ob-

jects that can be drawn include plans, operators, the sort hierarchy, the initial world model,

and problems. Finally, the NODE noun activates commands that apply to speci�c nodes in

the currently drawn plan, e.g., highlighting all actions in parallel with a speci�c action.

Sipe{2 automatically lays out the nodes of a new plan and gives the user several options

concerning which nodes to display and how to label the nodes. One can highlight all the

successors of a node, or all the predecessors of a node, or all the nodes unordered with

respect to a node, or all nodes that mention a certain object or have certain predicates in

their e�ects. This capability is very useful in plans with many ordering links, such as military

operations plans. For example, highlighting all the nodes that mention Fennario Port shows

the schedule for that port, and highlighting all the nodes unordered with respect to a certain

node could show all actions in the current phase of the operation. All the actions that
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accomplish a certain condition can also be highlighted. For example, one can highlight all

the actions that move troops in a plan. The user can move nodes around with the mouse to

make the graph look exactly as desired.

During interactive planning, the system will highlight actions and goals for which choices

are being made by the user. The user may select the next goal to solve after all goals are

highlighted. The possible choices for a particular goal (e.g., operators or resources) can

then be drawn on request, and the plan drawing will be restored when the user has made a

choice. Similarly, nodes involved in resource conicts are highlighted when the user requests

to interactively solve resource conicts. If an ordering of two nodes is chosen, the GUI will

incrementally highlight and draw ordering links as they are added. In particular, it ashes

the �rst node, then draws the ordering link, and then ashes the second node. This gives an

excellent visual depiction of how the plan is owing.

6.3 PRS-CL

Users can interact with Prs-cl agents at run time by modifying their database, stop-

ping/restarting their execution, sending messages, and posting goals. Prs-cl also provides

an extensive tracing facility for monitoring run-time behavior. For each agent, a user can ac-

tivate textual tracing of various aspects of the agent's behavior; including database changes,

message passing, resource allocation, and procedure execution. Users can also display the

intentions for an individual agent. As described above, the intentions track the current activ-

ities and goals of an agent. The intention display makes explicit the hierarchical relationships

between goals and subgoals, as well as any prioritization amongst such goal trees.

Procedure execution can also be traced graphically, although for only a single agent at

a time. The graphical tracing facility allows the user to specify a set of Acts that are to

be displayed when executed. Nodes in the Act are highlighted as their associated goals are

undertaken. In this way, the user can visually monitor the activities of the system.

7 An Application of Cypress

An implemented example illustrates the use of Cypress within a military operations do-

main. This domain is an extended version of the one used for the second Integrated Feasibil-

ity Demonstration in the ARPA-Rome Laboratory Planning Initiative [40, 3]. The domain

knowledge includes approximately 100 plan operators, 500 objects with 15 to 20 properties

per object, and 2200 initial predicate instances. Plans range in size from several dozen to

200 actions, usually spread among numerous parallel threads of activity.

The scenario begins with Prs-cl continually monitoring the world and receiving a request

to deter all known military threats in a certain region. The executor does not have an Act

to accomplish this, so requests the planner to generate a plan for achieving this goal. Sipe{2

is invoked using a set of Acts previously input to the system. During the planning process,

Gister-CL assists the planner in choosing appropriate military forces for particular missions.
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The system generates employment plans for dealing with speci�c enemy courses of action,

and expanded deployment plans for getting the relevant combat forces, supporting forces, and

their equipment and supplies to their destinations in time for the successful completion of

their mission. Input to the system includes threat assessments, terrain analysis, apportioned

forces, transport capabilities, planning goals, key assumptions, and operational constraints.

The plan produced by Sipe{2 contains four main threads of parallel activities: two threads

for deterence using ground forces, one for deterence using naval forces, and the fourth using

air forces. Throughout the planning process, Prs-cl monitors the world for additional goals

and events that might require immediate action. Prs-cl executes the plan by applying

appropriate Acts to re�ne the plan to lower levels of abstractions, eventually bottoming out

in actions that are executable in the world. Prs-cl remains responsive to new goals and

events throughout.

As part of the air deterence operations, aircraft are moved among various air bases. The

use of an air base requires explicit transit approval, which is granted initially for all bases

in the domain. An execution failure can be triggered by rescinding transit approval for any

of the bases used in the plan. Prs-cl records any such changes, and detects a failure when

execution reaches the stage where the rescinded approval is required. No Acts are de�ned

for repairing such a failure locally, thus execution would completely fail at this point without

replanning. In Cypress, a replanning request is sent to Sipe{2. Meanwhile, execution of the

remaining branches of the original plan continues without disruption.

Replanning for this situation produces a modi�ed plan in which an alternative mobiliza-

tion strategy is employed. One of our test cases results in the removal of a dozen actions

from the plan, replacing them with a new subplan of similar length. The operations in the

new plan are selected so as not to interfere with the continuing execution of actions on other

parallel threads in the original plan. The new plan is sent to Prs-cl, which integrates the

new plan with its current activities and continues its attempts to achieve the original goal.

The ability to modify a complex, parallel plan at run time and adapt continuing execution

activity to the new plan is, to our knowledge, a new accomplishment. The computational

properties of this application are acceptable. Plan generation time for a small plan of 47

actions, 95 total plot nodes, and 15 parallel branchings is 13 seconds.6 Plan generation

time for a larger plan of 188 actions, 381 total plot nodes, and 72 parallel branchings is 96

seconds. (Non-action plot nodes include nodes that encode plan assumptions and rationale as

needed for plan modi�cation.) Modifying the plan as described requires only a few seconds,

depending on the modi�cation required. The executor has a cycle time of a small fraction of

a second.

6All times are user run time in Lucid Common Lisp on a Sun Sparcstation 10.
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8 Comparison to Other Work

Evaluations of the component technologies in Cypress (Prs-cl, Sipe{2, and Gister-CL) can

be found in the referenced literature for each subsystem (see Section 2). Here, we compare the

integrated system as a whole to previous systems that combine planning and execution. Since

there has been a marked increase in work on this topic in recent years, we do not attempt to

provide a comprehensive comparison; instead, we focus on a few representative approaches

that share our objective of producing taskable, reactive agents. Hanks and Firby [12] provide

a thorough discussion of the issues in integrating planning and execution, including issues

not addressed in this paper, such as reasoning about the utility of deliberation.

The complexity of the plans and the necessity of using them is what di�erentiates our

work from most other e�orts. Most of the previous work on combining planning and reactive

execution has been driven by the requirements of the execution system, using planning in

only very limited ways. The work on planning and execution systems for robotics applications

typi�es this bias. Current systems for mobile robots emphasize execution and control, using

only precomputed plans or simple plans generated at run-time. In contrast, domains such

as military operations require that the planner exercise greater inuence over the execution

system. The planner should generate a plan that will serve as the principal guidance for the

executor, which will generally have no idea how to accomplish the top-level goals appropri-

ately until the planner has generated a plan. There may be serious consequences if the plan

is ignored.

Lyons and Hendricks [26] describe an approach in which the planner monitors the execu-

tion of the reactive system and speci�es adaptations to the reactive system that will improve

its performance relative to achievement of the given goals. They require that these incre-

mental adaptations improve system performance before they are added to the reactor. The

RAP system [7] also uses simple plans to modify the reactive control of a robot. These and

other similar approaches use adaptive modi�cations to rule sets, rather than employing the

look-ahead reasoning of a generative planner. These approaches su�ce for robot applications,

where complex plans are not necessary. In more complex domains, high-level plans are es-

sential. Approaches that adapt the executor to improve its performance may not be feasible

because of the complexity of having many parallel execution threads. In our implementation,

the executor will suspend problematic execution threads, request the planner to modify the

plan, continue execution of nonproblematic actions while waiting for the planner, implement

lower-level behaviors while waiting, and restart execution when a modi�ed plan is received

The PHOENIX system [14] shares many objectives with the work reported here. The

system is reactive, provides certain kinds of failure recovery, and has been applied to the

practical problem of �re�ghting. However, it selects plans from a plan library rather than

performing generative planning to produce the high-level plans that guide the system. The

ATLANTIS system [9] for controlling mobile robots has an architecture that is similar to that

of Cypress. ATLANTIS provides asynchronous communication between a controller and

a deliberator that enables simultaneous planning and execution, asynchronous replanning,
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and look-ahead detection of possible failures. However, the deliberator employs a \simple

linear planner" that interacts with the controller only through previously designated inputs;

this contrasts with the general plan interface between planning and execution that Cypress

provides. Other systems provide replanning during execution but are limited to synchronous

approaches and do not support continued execution during replanning [19]. In contrast

to the heterogeneous design of Cypress, Washington's system [35] employs a homogeneous

framework in which planning and execution coexist, accessing a single plan structure that is

modi�ed over time in response to changes in the world. The system employs forward-chaining

expansion of plans and can begin execution without having a complete plan de�ned at any

level of abstraction. This approach enables the system to begin actions towards a goal when

time is critical, even when deliberation has not yet �nalized a plan for achieving that goal.

The motivations for the ACT representation are similar to those of the KRSL language

[20]. In fact, ACT has been one of the formalisms driving the design of the KRSL speci�cation

for plans. There are a number of di�erences, however. ACT is more focused, trying only to get

planning and execution systems to speak a common language, while the KRSL e�ort is more

ambitious, trying to develop a common language for many types of systems, including systems

for planning, execution, scheduling, simulation, temporal reasoning, database management,

and other tasks. Furthermore, KRSL does not yet provide the same degree of support for

execution activities as does ACT.

McDermott [27] describes RPL, a Lisp-like programming language for writing programs

that will produce goal-directed behavior and reactive response in a robot executing the pro-

gram. This work is tailored to the robot domain, and RPL is obscure for use as a plan

representation with which humans will interact. RPL is suited for producing specialized

modules that implement a particular behavior, while ACT is designed as an interlingua for

general-purpose functional modules. Rex [16] is another system designed for programming

behaviors for intelligent reactive systems.

Finally, we note that there has been previous work on the static portion of the replanning

task, namely modifying a failed plan from a description of the current world state (without

consideration of interactions with a persistent execution system). The most advanced e�orts

in this regard include SIPE (the predecessor of Sipe{2) [37], and priar [17]. The static

replanning techniques in Cypress include all those in SIPE, as well as some minor extensions.

9 Conclusion

Cypress is a powerful framework in which to de�ne taskable, reactive agents that can operate

in dynamic and unpredictable environments. While it does not yet address all aspects of

activity for such environments, it does provide a strong basis for building intelligent control

systems that operate in challenging domains. The integrated planning, execution, and rea-

soning about uncertainty demonstrated in the military problem attests to this fact, showing

both that Cypress is su�ciently powerful and has acceptable computational properties. In

this application, the planner generates and modi�es plans containing hundreds of plot nodes
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while the executor executes the plans produced and uses Acts to respond to events, performs

lower-level actions that have not been planned, and invokes the planner when replanning is re-

quired (while continuing execution). To our knowledge, the ability to do so with sophisticated

plans is a new accomplishment.

The development of Cypress involved more than simply engineering the integration of

existing systems. The asynchronous replanning facility constitutes one important technolog-

ical advancement, providing exible plan execution that can adapt to signi�cant unexpected

changes in the world. In addition, interesting technical problems related to the integration of

planners and executors had to be addressed, leading to the development of the ACT formal-

ism. ACT supports the representation of knowledge necessary for the generation and execu-

tion of plans suitable for use in complex and dynamic environments. As such, it can serve as

an interlingua that supports heterogeneous combinations of AI technologies in planning and

reactive control. Subtle di�erences between these two classes of systems were identi�ed and

several extensions were made to the existing planning and execution technologies to imple-

ment ACT. ACT, which was inuenced by the design of Prs-cl and Sipe{2, is intended to

be a general-purpose representation language that can be used to share knowledge between

many di�erent execution and planning systems.

9.1 Future Work

While Sipe{2, Prs-cl, and Gister-CL represent advanced technologies in their respective

areas, each could be strengthened in a number of ways. Sipe{2 would be more useful if it

could relax constraints, reason about partial achievement of goals, and weigh the utility of

plans with partially achieved goals. Gister-CL could be usefully integrated into this process of

predicting the partial achievement of goals and the utility of plans in uncertain environments.

The major technological hurdle is the reduction of combinatorics. Prs-cl is a powerful tool

for reactive control but is not `real-time' in that it cannot guarantee response to critical

events in small, absolute time intervals. With respect to replanning, the failure recognition

component of Prs-cl could be extended to handle additional types of execution failure.

Adding these capabilities to the various component systems would greatly increase the scope

of applications for which Cypress could be employed. We note that for the most part, the

above enhancements reect open research problems that have yet to be solved adequately in

the AI community.

The ability to represent all the constructs in Prs-cl and Sipe{2 implies that the ACT

formalism is su�cient for a wide range of interesting problems, since both these systems have

been applied to several practical problems. However, there are many types of knowledge

that could be of use to an integrated planning-execution system that are not yet included

in ACT. We view ACT is an evolving entity that will be extended as additional features

are required. Possible future extensions include goal expressions that are matched in the

presence of uncertainty, actions with uncertain e�ects, knowledge about the utility of actions

or Acts, reasoning about the beliefs of other agents, partial achievement of goals, and extended
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resource reasoning and scheduling capabilities.

For reasons described in Section 1, Cypress was built on top of several prede�ned tech-

nologies. The result is a heterogeneous, loosely coupled system with a very limited set of

interactions amongst its components. The heterogeneous model has numerous advantages,

including the ability to run subsystems on di�erent machines, and the potential for swapping

in di�erent component technologies in a modular fashion. However, strengthening the inter-

actions among the subsystems, particularly between planning and execution, is essential to

providing more intelligent activity.

The �xed level of interaction between planning and execution in Cypress is one problem

that derives from the loose coupling of the component systems. As described in Section 2.4,

we currently �x a level of abstraction to serve as an interface point between the planner and

executor. Fixed interaction levels are acceptable in domains like military operations because

high-level operations often should not be initiated without a detailed plan, and execution

times of hours or even days provide ample time for the planner to respond. In more time-

constrained domains where it may be necessary to respond quickly to high-level goals, this

approach detracts from the exibility of the system in two ways.

First, the responsiveness of the executor to newly posted high-level goals that require

planning is reduced since the executor must wait for the planner to �nish planning to the

interaction level before it can initiate actions designed to achieve the goal. Second, it would be

preferable to allow the agent to decide in a situation-dependent manner what is an appropriate

level of abstraction at which to halt planning by weighing the utility of planning versus acting.

The use of ACT as a common representation language for both planning and execution

provides the basis for more exible interactions. In particular, Prs-cl can execute a plan

at any level of abstraction by applying the same Acts used for plan expansion (although

without the bene�t of Sipe{2's look-ahead reasoning). At this point in time, however, we

have not yet provided the higher-level capabilities for overseeing such a exible transfer of

control between Sipe{2 and Prs-cl. Architectures and methods that address this problem

have been proposed [4, 5, 13]. We hope to develop similar techniques for Cypress, possibly

using the evidential reasoning capabilities within the system to weigh the utility of planning

versus acting under uncertainty.

Additional communication between the two systems during both execution and replanning

could also lead to more intelligent activity. For example, Sipe{2 could receive periodic

updates from Prs-cl regarding changes in the world. This information would enable Sipe{2

to reason forward in time to anticipate future plan failures (envelopes, in the terminology

of [14]), rather than simply responding to failures once they arise. As a second example, it

would be useful to have Sipe{2 communicate with Prs-cl during the replanning process to

provide information about changes being made to the plan. Prs-cl could then modify its

execution of the original plan to avoid undertaking steps that will be eliminated or modi�ed

in the new plan being generated.
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