
A Common Knowledge Representation for Plan

Generation and Reactive Execution

David E. Wilkins Karen L. Myers

SRI International

Arti�cial Intelligence Center

8 July 1994

This paper has been accepted to the Journal of Logic and Computation, and should

appear in 1995. Meanwhile, it is also available in postcript form on the World Wide

Web in http://www.ai.sri.com/people/ wilkins, and as SRI AI Center Technical Note

532R.

The views, opinions and/or conclusions contained in this note are those of the

author and should not be interpreted as representative of the positions, decisions,

or policies, either expressed or implied, of the Advanced Research Projects Agency,

Rome Laboratory, or the United States Government.

A
SRI International, 333 Ravenswood Ave., Menlo Park, Ca. 94025

0

Abstract

The ability to integrate sophisticated planning techniques with reactive ex-

ecution systems is critical for nontrivial applications. Merging these two tech-

nologies is di�cult because the forms of knowledge and reasoning that they

employ di�er substantially. The ACT formalism is a language for representing

the knowledge required to support both the generation of complex plans and

reactive execution of those plans in dynamic environments. A design goal of

ACT was its adequacy for practical applications. ACT has been used as the in-

terlingua in an implemented system that links a previously implemented planner

with a previously implemented executor. This system has been used in several

applications, including robot control and military operations, thus attesting to

its expressive and computational adequacy.

i

Contents

1 Introduction 1

1.1 Validation : 2

1.2 Overview of the Paper : 2

2 Planning and Execution Technologies 2

2.1 SIPE-2 : 3

2.1.1 Operators : 4

2.1.2 Deductive Rules : 5

2.2 PRS : 6

2.2.1 Knowledge Areas : 8

3 Developing a Common Representation 10

3.1 Commonalities : 10

3.2 Di�erences : 11

4 The ACT Formalism 12

4.1 Goal Expressions : 13

4.2 ACT Environment Conditions : 13

4.3 Plots : 15

4.3.1 Metapredicates in Plot Nodes : : : : : : : : : : : : : : : : : : : 15

4.3.2 Plot Topologies : 16

4.3.3 Temporal Reasoning : 17

4.4 Variables : 19

4.5 ACT Metapredicates : 19

4.6 Examples : 21

5 Implementing ACT 23

5.1 Adequacy of ACT for Cypress : 24

5.2 Extending SIPE-2 and PRS-CL for ACT : : : : : : : : : : : : : : : : : 25

5.3 Using Acts : 26

6 Comparison to Other Work 27

7 Conclusion 29

ii

List of Figures

1 Sipe Operator for Deploying an Air Force : : : : : : : : : : : : : : : : 5

2 Sipe Deductive Rule for Removing Located Facts : : : : : : : : : : : : 6

3 Architecture of the Procedural Reasoning System : : : : : : : : : : : : 7

4 KA for Deploying an Air Force : 8

5 Portion of a KA for Leak Isolation : 10

6 Deploy Airforce Act : 16

7 Iterative Factorial Act : 18

8 An Act for Establishing a Lookout : 22

9 An Act for Deducing Locations : 23

10 The Architecture of Cypress : 24

iii

Abstract

The ability to integrate sophisticated planning techniques with reactive ex-

ecution systems is critical for nontrivial applications. Merging these two tech-

nologies is di�cult because the forms of knowledge and reasoning that they

employ di�er substantially. The ACT formalism is a language for representing

the knowledge required to support both the generation of complex plans and

reactive execution of those plans in dynamic environments. A design goal of

ACT was its adequacy for practical applications. ACT has been used as the in-

terlingua in an implemented system that links a previously implemented planner

with a previously implemented executor. This system has been used in several

applications, including robot control and military operations, thus attesting to

its expressive and computational adequacy.

1 Introduction

Our research involves developing systems to select and execute appropriate actions

for achieving goals in dynamic and uncertain environments. Dynamic environments

require the ability to react to unexpected events and to make appropriate decisions

quickly. These systems should be capable of acting in a reasonable manner without

a plan; however, the ability to synthesize plans and use these plans to guide the

execution of the systems is critical for nontrivial tasks.

Traditionally, plan generation and reactive execution have been considered as sep-

arate activities, with few attempts to integrate them within a single system. Such

integration is di�cult, given that generation and execution involve di�erent kinds of

knowledge and reasoning capabilities. We have developed the ACT formalism for

representing the knowledge necessary to support both plan generation and reactive

execution. This paper describes ACT, the design decisions behind it, and its use in

sharing knowledge between an implemented planner and an implemented executor.

Development of an interlingua that enables multiple reasoning systems to coop-

erate on di�erent aspects of the same problem is a central challenge for the �eld of

arti�cial intelligence (AI). ACT addresses the restricted case of getting planning and

execution systems to cooperate, thus allowing heterogeneous combinations of di�erent

planning and execution systems. Such focus is critical to achieving success in terms

of near-term use in software tools, since a common representation that tries to cover

too broad an area runs into problems that have been described elsewhere [10].

Two features distinguish our approach: (1) the development of a heuristically

adequate system that will be useful in practical applications, and (2) the need to

generate and execute complex plans with parallel actions of multiple agents. To

aid in achieving these requirements, we began with AI technologies in planning and

reactive control that had been developed previously and shown to be useful in practical

applications. The representational capabilities of these systems provides a minimal

level of functionality to be incorporated into ACT. However, ACT is intended to serve

as a general-purpose representation language that could be used to share knowledge

between many di�erent execution and planning systems. In fact, several extensions

were made to the existing planning and execution technologies to fully implement

ACT. We anticipate that ACT will evolve over time to incorporate new concepts that

prove to be useful.

1

1.1 Validation

The representational and computational adequacy of ACT has been validated by

implementing the Cypress system, which uses ACT as an interlingua to enable run-

time interactions between planning and execution subsystems. Cypress has been

applied in two domains that are complex, uncertain and dynamic. The �rst domain

is controlling an indoor mobile robot. A reactive controller is necessary to respond to

people and obstacles that may suddenly and unexpectedly appear in the robot's path.

Deliberative planning is necessary so that the robot can achieve purposeful behavior,

such as retrieving a book from the library and bringing it to someone's o�ce.

The second domain is military operations planning. Certainly one would not

engage in an operation like Desert Storm without �rst doing deliberative planning

to achieve the requirements of the mission. Reactive response is necessary because

execution of military plans is often interrupted by unexpected equipment failures,

weather conditions, enemy actions, and other events that may require changes to the

overall strategic plan.
1

A complete description of the applications of ACT to the robot and military

problems is beyond the scope of this paper, although self-explanatory examples are

given. More detailed descriptions can be found elsewhere [17, 19, 4]. Examples in

this paper are drawn primarily from the domain of planning military operations.

1.2 Overview of the Paper

Section 2 begins with brief descriptions of the initial AI technologies. Several di�-

culties in de�ning a common representation for planning and execution are described

and addressed in Section 3. Section 4 presents the de�nition of ACT itself. Section 5

describes the use of ACT in Cypress and the extensions made to the existing planning

and execution technologies to fully implement ACT. This is followed by a comparison

to related work.

2 Planning and Execution Technologies

To achieve a system that will be useful in practical applications, we started with

AI technologies in planning and reactive control that had already been implemented

and shown to have these properties. In particular, the basis for our system is the

Sipe{2 (System for Interactive Planning and Execution) planning system and the

Procedural Reasoning System (PRS). These two systems originally employed vastly

di�erent formalisms for encoding knowledge about actions. The ACT formalism is

a common representation that both systems can use for representing and reasoning

about plans and the knowledge necessary to generate and execute them. The complete

inputs for both systems can be speci�ed in ACT. Translators have been implemented

from the ACT formalism to both Sipe{2 and PRS (see Section 5.1), so ACT is now

the preferred language for encoding knowledge in both systems.

The development of PRS and Sipe{2 was driven by their applications to numerous

problem domains. Similarly, the design of the ACT formalism has been driven by the

1Application of our systems to this domain, as well as the work described here, was done as part
of the ARPA-Rome Laboratory Planning Initiative (ARPI) [19].

2

functionalities provided in these two systems. As a result, the ACT formalism is

su�cient for a wide range of interesting problems. However, ACT should not be

considered a �xed representation that has been designed to cover every anticipated

need. Extensions will no doubt be made to it as new domains require new features.

This philosophy is consistent with our goal of handling practical applications, and

has the advantage that our representational constructs have their properties tested

in real domains as they are added to the formalism. By doing so, the problem of

developing extremely expressive representations with poor computational properties

and little practical merit is avoided.

Before describing the ACT formalism, the two systems for which it provides a

common representation are briey described. More detailed descriptions can be found

elsewhere [9, 17, 18].

2.1 SIPE-2

Sipe{2 is a partial-order AI planning system that supports planning at multiple

levels of abstraction. It provides a formalism for describing actions as operators and

utilizes knowledge encoded in this formalism, together with heuristics for reducing

the computational complexity of the problem, to generate plans for achieving given

goals. Given an arbitrary initial situation, the system either automatically or under

interactive control combines operators to generate plans to achieve the prescribed

goals. Sipe{2 is capable of generating a novel sequence of actions that responds

precisely to the situation at hand. The generated plans include information so that

during plan execution the system can accept descriptions of arbitrary unexpected

occurrences and modify its plans to take these into account.

Sipe{2's formalism allows reasoning about resources, the posting and use of con-

straints on planning variables, and the description of a deductive causal theory to

represent and reason about the e�ects of actions in di�erent world states. In contrast

to most AI planning research, heuristic adequacy (e�ciency) has been one of the pri-

mary goals in the design of Sipe{2. Techniques have been developed for e�ciently

implementing each of the features mentioned above.

Sipe{2 provides a powerful graphical user interface to aid in generating plans,

viewing complex plans and other information as graphs on the screen, and following

and controlling the planning process [19]. This technology is generic and domain-

independent, and has proven useful on a large variety of problems. Example applica-

tions include planning the actions of a mobile robot, managing aircraft on a carrier

deck, containing oil spills, travel planning, construction tasks, producing products

from raw materials under production and resource constraints, and joint military op-

erations planning [18, 19].
2
In the military domain used for most examples in this

paper, Sipe{2 successfully generated employment plans for dealing with speci�c en-

emy courses of action, and expanded deployment plans for getting the relevant combat

forces, supporting forces, and their equipment and supplies to their destinations in

time for the successful completion of their mission. Input to the system includes

threat assessments, terrain analysis, apportioned forces, transport capabilities, plan-

ning goals, key assumptions, and operational constraints.

2Sipe{2 is the core reasoning engine in SRI's SOCAP system (System for Operations Crisis

Action Planning) [19], which was used for the second Integrated Feasibility Demonstration of ARPI.

3

2.1.1 Operators

A brief description of how Sipe{2 represents operators will help to explain the central

ideas of the ACT formalismand the translation process fromSipe{2 to ACT and back.

Operators represent the actions, at di�erent levels of abstraction, that the system may

perform in the given domain. The primary representational task of an operator is to

describe how the world changes after the action it represents is executed. Sipe{2

makes the assumption that the world stays the same except for the e�ects explicitly

listed with each action in its representation of the plan.

Many of the e�ects in the plan are not explicitly listed in the operators from which

the plan was produced, since they are deduced by the system during generation of

the plan from the deductive causal theory of the domain. Operators must list only

e�ects that are required to trigger all the necessary deduced e�ects. Since the causal

theory will deduce di�erent e�ects depending on the situation, the operators can be

applied in any situation. Without such an ability, a huge number of operators may

be needed since there must be a di�erent operator (with di�erent e�ects) for every

di�erent situation in which an action might be performed.

In addition to e�ects, operators contain information about the objects that par-

ticipate in the actions, the constraints that must be placed on them, the goals that

the actions are attempting to achieve, the way actions in this operator relate to more

or less abstract descriptions of the same action, and the conditions necessary before

the actions can be performed (the action's preconditions). These features will be

presented by discussing the Sipe{2 operator in Figure 1 for deploying an air force in

the military domain. The ACT translation of this operator will be given in Section 4.

The purpose of an operator determines which goals the operator can solve | in this

case, to deploy an air force to a particular air�eld by a certain time. The precondition

must be true in the world state before the operator can be applied. The precondition

in Figure 1 requires the initial position of the air force to be known, and determines

intermediate seaports and airports that are on routes to the destination given in the

database and have transit approval. The arguments of an operator are templates for

creating planning variables and adding constraints to them. In Figure 1, airforce1 and

air�eld1, for example, are variables that are constrained (by virtue of their names) to

be in the classes airforce and air�eld, respectively. The operator's precondition and

purpose are both encoded as �rst-order predicates on the arguments of the operator,

which can be variables or objects in the domain.

Applying an operator involves interpreting its plot as a subplan for achieving its

purpose. The plot of an operator provides a partially ordered sequence of actions

and goals for performing the higher-level action represented by the operator. When

expanding a plan to a lower level of detail, the planner uses the plot as a template

for generating actions to insert in the plan. The plot may be at the same level of

abstraction as the purpose of the operator (e.g., in the standard blocks world the

level of abstraction never changes), or a lower level. In Figure 1, the plot consists of

mobilizing the air force, then getting the subparts of the air force to travel in parallel

by air and by sea via di�erent locations to the destination, and �nally aggregating

the subparts together when they have all reached the destination.

The plot of an operator can be described in terms of goal nodes, which require

a certain predicate to be achieved, choiceprocess nodes, which require that one of a

given set of operators be applied to solve a certain predicate, and process nodes, which

4

Operator: Deploy-airforce

Arguments: airforce1,air�eld2,end-time1,

location1,air�eld1,cargobyair1,cargobysea1,

seaport1,seaport2,sea-loc1,air-loc1;

Purpose: (deployed airforce1 air�eld2 end-time1)

Precondition: (located airforce1 location1)

(near air�eld1 location1) (near seaport1 location1)

(partition-force airforce1 cargobyair1 cargobysea1)

(transit-approval air�eld2)(transit-approval seaport2)

(near seaport2 air�eld2)

(route-aloc air�eld1 air�eld2 air-loc1)

(route-sloc seaport1 seaport2 sea-loc1)

Plot:

Process

Action: mobilize

Arguments: airforce1,location1;

E�ects: (mobilized airforce1 location1)

Parallel

Branch 1:

Goal: (located cargobyair1 air�eld1)

Goal: (located cargobyair1 air�eld2)

Branch 2:

Goal: (located cargobysea1 seaport1)

Goal: (located cargobysea1 seaport2)

Goal: (located cargobysea1 air�eld2)

End Parallel

Process

Action: join-aggregate

Arguments: airforce1,air�eld2,cargobyair1,cargobysea1;

E�ects: (located airforce1 air�eld2)

(not (located cargobyair1 air�eld2))

(not (located cargobysea1 air�eld2))

End Plot End Operator

Figure 1: Sipe Operator for Deploying an Air Force

require a speci�c operator or primitive action to be applied. In the example operator,

the plot uses process nodes for mobilizing and aggregating the air force, and uses goal

nodes to achieve changes in location of the subparts.

2.1.2 Deductive Rules

In Sipe{2, the deductive rules typically deduce most of the e�ects of the actions in a

plan. In the example operator, all the e�ects of moving a subpart to a new location

are deduced from the located goal predicate. In particular, the deduced e�ects will

include the fact that the unit is not at its previous location and its location at other

5

Causal-Rule: Remove-located

Arguments: unit1, location2, location1 is not location2

Trigger: (located unit1 location2)

Precondition: (located unit1 location1)

E�ects: (not (located unit1 location1))

Figure 2: Sipe Deductive Rule for Removing Located Facts

abstraction levels has changed.

The deductive rules that specify the causal theory also use the above operator

syntax. Instead of having a plot to direct plan expansion, they have an e�ects slot

that speci�es the deduced predicates to be added to the e�ects of an action. The

rule for deducing that a unit is not at its previous location is shown in Figure 2.

Deductive operators allow expression of domain constraints within a world state, as

well as permitting access to the previous world state. Rules that allow the former

are called state rules, while rules that allow the latter (such as the rule in Figure 2)

are called causal rules. By accessing both the current and previous world states, the

system can react to changes between two states, thus permitting e�ects concerning

what happened during an action to be deduced even though these e�ects might not

be implied by the �nal world state.

To access both the previous and current world states, causal rules have both a

precondition and a condition. When deducing the e�ects of an action, the condition

is matched in the world state after the action, while the precondition is matched in

the world state before the action. Thus, state rules may have a condition but not

a precondition, while causal rules may have both. Two other slots are needed on

a deductive operator, trigger and e�ects. A deductive rule is applied whenever an

action being inserted in a plan has an e�ect that matches the predicate given as the

rule's trigger. The addition of deduced e�ects to an action also triggers deductive

rules. If the precondition and condition of a triggered rule are both true, then the

e�ects of the rule are added as deduced e�ects of the action.

2.2 PRS

The Procedural Reasoning System (PRS) [9] is a framework for constructing reactive

control systems that can perform complex tasks in dynamic environments. PRS

attempts to achieve any goals it might have, given its current beliefs about the world,

while simultaneously reacting to new events that occur, thus providing a framework

in which goal-directed and event-driven behaviors can be integrated smoothly. Here,

we describe PRS as it was de�ned when work on ACT �rst began. As discussed in

Section 5.2, many capabilities in ACT were added to to this version of PRS, resulting

in a new system called Prs-cl.

The architecture of PRS is depicted in Figure 3. PRS consists of (1) a database

containing current beliefs or facts about the world; (2) a set of current goals to be

realized; (3) a set of operators, called Knowledge Areas (KAs), describing how se-

quences of actions and tests may be performed to achieve certain goals or to react to

particular situations; and (4) intentions containing those KAs that have been chosen

6

User Interface

IntentionsDatabase

Interpreter

Goals KA Library

KA Editor

World

Figure 3: Architecture of the Procedural Reasoning System

for (eventual) execution. An interpreter manipulates these components, by selecting

appropriate KAs for execution based on the system's beliefs and goals, then creating

the corresponding intentions, and �nally executing them.

The system interacts with its environment through its database (which acquires

new beliefs in response to changes in the environment) and through the actions that

it performs as it carries out its intentions. While executing plans, PRS constantly

monitors incoming database changes. The inference mechanism used guarantees that

any new fact in the database is noticed in a bounded time, thus providing rapid

response to new events.

PRS has several capabilities that make it a powerful system for developing real-

time applications. Multiple copies of PRS objects, each referred to as an agent, can

be run in parallel. Agents operate asynchronously but can communicate through

message passing to solve problems in a distributed, cooperative manner. In addition,

meta-KAs can be used to implement complex control and scheduling behaviors, as

required for individual applications. KAs can manipulate the internal beliefs, goals,

and intentions of PRS, and KAs that do so are referred to as meta-KAs. For example,

a meta-KA might modify the intentions of the system after computing the amount

of reasoning that can be undertaken given the real-time constraints of the problem

domain. Further details are given elsewhere [8].

7

Figure 4: KA for Deploying an Air Force

2.2.1 Knowledge Areas

Describing the representation of KAs in PRS will help explain the central ideas of

the ACT formalism and the translation process from ACT to PRS. The KAs encode

knowledge of how to accomplish goals or react to certain events. Each KA consists

of an applicability condition, which speci�es under what situations the KA is useful,

and a body, which describes the steps of the procedure. Together, the applicability

condition and body of a KA express a declarative fact about the results and utility

of performing certain sequences of actions under certain conditions.

The body and invocation condition will be presented by discussing the KAs in

Figures 4 and 5. The former is a KA for deploying an air force that is useful for

comparisons with Sipe{2 operators and the ACT formalism. (The ACT version of

this KA will be given in Section 4; the Sipe{2 representation of this knowledge was

shown in Figure 1.) However, this KA encodes the kind of knowledge generally used

by a high-level planning operator and is not representative of the knowledge that

is typically used by PRS. Therefore, the KA in Figure 5 for isolating a leak in a

complex physical system is also described. In fact, the DEPLOY-AIRFORCE KA can be

executed only in Prs-cl since the version of PRS described in the literature [9] does

not support parallel execution of actions within a KA.

The applicability condition of a KA has two components: an invocation part and

a context part. Both must be satis�ed for the KA to be applied. The invocation

part of a KA is a logical expression describing the events that must occur for the

KA to be executed. Usually, these consist of some change in system goals (in which

case, the KA is invoked in a goal-directed fashion) or system beliefs (resulting in data-

8

directed or reactive invocation), and may involve both. The invocation part of the

DEPLOY-AIRFORCE KA speci�es that the KA will be considered for application when

PRS is given the goal to achieve the deployment of an air force to an air�eld.

The context of a KA is a logical expression that speci�es conditions that must be

true in the current state in order for the KA to be executed. The context for the

DEPLOY-AIRFORCE KA requires (among other things) that the initial position of the

air force be known, and that intermediate seaports and airports on known routes to

the destination have been granted transit approval. Satisfaction of the context may

involve binding variables within its logical expression to speci�c domain objects.

The KA body describes what to do if the KA is chosen for execution. The body

is represented as a graphic network in which execution begins at the START node in

the network, and proceeds by traversing arcs through the network. Each arc of the

network is labeled with a goal to be achieved by the system. To traverse an arc, the

system must either (1) determine from the database that the goal has already been

achieved or (2) �nd and successfully execute a KA that achieves the goal labeling

that arc. When more than one arc emanates from a given node, only one of the arcs

needs to be traversed. PRS will test the arcs emanating from a node in an arbitrary

order until one is found that can be successfully traversed. PRS then \commits"

to this choice, ignoring all other arcs from the node. Thus, multiple outgoing arcs

from a node are used to implement conditional branching, as shown in Figure 5.

Execution completes successfully when an end node (i.e., a node with no outgoing

arcs) is reached. If the system cannot successfully traverse any of the arcs emanating

from a node, then execution fails for the KA.

In Figure 4, the �rst arc of the body is labeled with the goal of achieving the

mobilization of the air force. As described in Section 5.2, Prs-cl supports parallel

execution of nodes | to successfully execute the nodes with double borders in Figure 4

(S1 and S4), Prs-cl must successfully traverse all their incoming and outgoing arcs.
3

Subsequent arcs are labeled with goals to move the subparts of the air force, and the

last arc in the body is labeled with a goal to post certain facts in the database about

the air force and its subparts.

The KA in Figure 5 is more typical of the procedural knowledge used by PRS.

Arcs are labeled with low-level goals that are close to the primitive execution level,

and numerous branches are used to select courses of actions conditionally at run time.

This KA describes a procedure for isolating a leak in a reaction control system (RCS)

of the space shuttle. It is applicable when the system acquires the goal to isolate a

leak in an RCS ($p-sys), provided the various conditions in the context are true.

The full KA for this procedure consists of more than 45 nodes.

To traverse the arc emanating from the start node requires either that the system

be already secured or that some KA for securing the RCS be found and successfully

executed. Similarly, to transit the next arc requires that some KA be found for

determining the pressure change $delta-p1 in the manifold $manf1. Since only one

arc emanates from the start node in Figure 5, if all attempts to secure the RCS fail,

this procedure for isolating a leak in the system will also fail.

3The original PRS did not support parallel execution within a KA.

9

Figure 5: Portion of a KA for Leak Isolation

3 Developing a Common Representation

Consolidating the representational needs of both plan generation and reactive exe-

cution systems is no small task, given the widely di�erent functionalities of the two

classes of systems. For example, execution systems frequently use conditionals and

loops, and monitor the world to determine what is true. Generative planners stress

parallel actions and predicting the results of taking certain actions. There is, however,

much overlap in the representational requirements for the two classes of systems. We

discuss both the commonalities and di�erences between their respective representa-

tional needs.

3.1 Commonalities

Plan generation and reactive execution systems share many representational require-

ments. At the heart of both plan is the need for a language in which to express beliefs

and goals. Such a language provides the basis upon which to build representations of

actions, plans, and operators. Goals having di�erent modalities are important to both

classes of systems, including goals of achievement, testing, and maintenance (among

others). The ability to express protection intervals for conditions to be maintained is

a common necessity.

10

The notion of applicability of a procedure or operator to accomplish a goal is shared

by both classes of systems. Certain conditions must be met before a procedure or

operator can be used. Both classes of systems require the means to order goals and

actions. Flexibility in this regard is important: it should be possible to represent both

sequential and parallel activities, as well as cycles and conditional branching.

Another shared requirement is the ability to represent information required for

deductive reasoning. Plan generation systems require deductive reasoning to keep

track of the context-dependent e�ects of actions. Such a capability greatly enhances

the usefulness of a planning system, and is an important part of most applications of

Sipe{2. Plan execution systems make use of deductive reasoning for keeping track of

consequences of changes in the world.

While the above shared representational needs are critical to both classes of sys-

tems, additional capabilities may be needed for certain applications. Examples include

abilities to specify and allocate resources, and abilities to specify and reason about

temporal constraints.

3.2 Di�erences

Generative planners and reactive executors (referred to hereafter as planners and

executors) have widely di�ering operational characteristics. Those that lead to rep-

resentational di�erences between the two classes of systems are described here, and

those that lead to di�ering interpretations or implementations of a common represen-

tation are described in Sections 4 and 5.

Executors are designed to respond to new goals and information and take appro-

priate steps as a consequence. They are expected to be embedded in the real world,

and typically employ a single world model corresponding to the actual perceived state.

In contrast, planners explore a search space to generate a partially ordered set of ac-

tivities designed to satisfy a particular goal. Planners must reason about hypothetical

future states that would result from taking certain actions. This distinction between

a single world state versus numerous hypothetical states impacts how these systems

respond to failures and model the world.

Since planners reason about possible future world states, they must model every

proposition of interest internally. In contrast, executors are embedded systems that

can gather information from the world. Thus, executors treat the world as an infor-

mation source and apply sensors to collect additional information about the world.

Representations for actions must support the speci�cation of procedures for actively

testing properties of the world.

Failure has di�erent meanings for the two classes of systems. Failure for planners

means that either a plan (or partial plan) that has been constructed is not suitable.

Unsuitability can arise because a complete plan does not satisfy the original goal, a

constraint (e.g., a goal of maintenance or a resource requirement) is violated, or there

is no completion of a partial plan that could satisfy the goal. Upon failure, planners

have several options. They can backtrack to consider alternative plan choices, or em-

ploy various algorithms to modify the plan so that it will satisfy the goal or not violate

the constraints (e.g., there are algorithms to eliminate resource conicts). Failure has

di�erent consequences for executors since they are taking actions in the world. Thus,

failure generally indicates that the current set of activities should be aborted, but

11

it is di�cult to determine the most appropriate response. Thus, executors will need

to encode procedures, unnecessary to planners, that will allow recovery from failure

states.

Other di�ering operational characteristics also impact any common representa-

tion. Executors do not reason ahead about the consequences of their actions. As

a result, many executors contain some form of reective reasoning that allows them

to reason about current activities in order to decide on future actions. From a rep-

resentational perspective, such reective reasoning requires the means to represent

notions of system goals and activity within the representation language. Planners

don't require such facilities, as they have no corresponding need for reective reason-

ing. While a planner could control its search by reective reasoning, most AI planners

instead have specialized search engines to quickly change focus in the search space.

Planners proceed froma �xed initial state, while executors operate in environments

that are highly dynamic and may change in unpredictable ways during execution.

Executors must be able to respond to such changes in a timely fashion, and therefore

require the ability to represent event-driven behavior. Executors will need knowledge,

unnecessary to planners, about how to respond to events as they occur.

Planners and executors rely on di�erent kinds of action sequences. Executors

rely on constructs such as conditional actions and iteration, while planners emphasize

parallel execution. Parallel execution is often ignored in executors; for example, before

extensions were made to support ACT, PRS did not support parallel execution of

actions within a KA. An adequate shared representation of actions for planners and

executors must support all of these sequencing operations.

4 The ACT Formalism

The ACT formalism is a domain-independent language for representing the kinds

of knowledge about activity used by both plan generation and reactive execution

systems. The basic unit of representations is an Act, which can be used to encode

both plan fragments and standard operating procedures (SOPs).

An Act describes a set of actions that can be taken to ful�ll some designated

purpose under certain conditions. The purpose could be either to satisfy a goal or to

respond to some event in the world. The purpose and applicability criteria for an Act

are formulated using a �xed set of environment conditions. Action speci�cations are

called the plot, and consist of a partially ordered set of actions and subgoals.

The environment conditions and plots are speci�ed using goal expressions, each

of which consists of one of a prede�ned set of metapredicates applied to a logical

formula. The metapredicates permit the speci�cation of many di�erent modes of

activity, including goals of achievement, maintenance, and testing.

Our discussion begins with an overview of the goal expressions supported in ACT,

next describes the environment conditions and plots, then explains variable usage

in Acts, and �nally describes how the metapredicates are interpreted by both the

planner and the executor. An additional issue in the design of ACT was to make it

clear enough to enable users to understand Acts and to allow knowledge engineers to

encode domain knowledge as Acts. Thus, it was necessary to balance the power of

the representation with its perspicuity (e.g., see Section 4.3). The complete grammar

12

Environment Slot Role

Name identi�er

Cue used to e�ciently retrieve this Act

Precondition gating conditions on applicability of this Act

Setting queries world to bind local variables

Resources resource constraints

Properties user-de�ned attributes, temporal constraints

Comment documentation

Table 1: Environment Conditions and Their Roles

for ACT is given in the Appendix, which also documents restrictions on this syntax

imposed by our implementation (see Section 5).

4.1 Goal Expressions

Goal expressions describe requirements on the planning/execution process and desired

states to be reached. They consist of an ACT metapredicate applied to a logical for-

mula built from predicates speci�ed in �rst-order logic, connectives, and the names

of Acts. The predicates describe possible goals and beliefs of the system. Goal

expressions are used to specify both applicability conditions for environment condi-

tions and subgoals for plot nodes. The interpretation of the goal expression can vary

slightly, depending on whether it is in an environment condition or plot node. The

following summary introduces the metapredicates; more precise meanings are given

in Section 4.5.

The Testmetapredicate speci�es a formula whose truth value must be ascertained.

The Use-Resourcemetapredicate makes a declaration of resources that will be used by

the Act, and hence that must be available for an Act to be applied. Three metapred-

icates can be thought of as specifying actions: Achieve, Achieve-By, and Wait-Until.

Achieve metapredicates direct the system to accomplish a goal by any means possi-

ble; the Achieve-By metapredicate is similar but speci�es a restricted set of Acts that

can be used to accomplish the task. Wait-Until directs the system to wait until some

speci�ed condition holds. The Require-Untilmetapredicate designates conditions that

must be maintained over a speci�ed interval. The Conclude metapredicate designates

information about changes in the world caused by an action.

4.2 ACT Environment Conditions

The ACT environment conditions are de�ned as a series of �xed slots, shown in

Table 1. Name and Comment are straightforward; the former is a unique identi�er

for the Act, and the latter is a string that provides documentation. The slots Cue,

Precondition, Setting, and Resources are referred to as the gating slots for an Act

because they specify conditions that must be satis�ed in order for the Act to be

applicable in a given situation. The gating slots are �lled with one or more goal

expressions. The environment conditions are discussed in detail below, including an

explanation of what it means for a condition to be satis�ed. Table 2 displays the

metapredicates allowed in each of the gating slots.

13

Gating Slot Metapredicates

Cue Achieve, Test, Conclude

Preconditions Achieve, Test

Setting Test

Resources Use-Resource

Table 2: Metapredicates Allowed in Gating Slots

Cue

The Cue indicates the purpose for which the Act can be used. The Cue can contain

either an Achieve, Test, or Conclude metapredicate. An Achieve metapredicate in

the Cue indicates that the Act can achieve some condition { that is, it can be used

for subgoaling. A Test metapredicate indicates that the Act can actively test some

condition. Active testing is important for situations where the truth-value of a formula

needs to be attained, but the information is not contained in the system database.

For example, one might create an active-test Act for a procedure to obtain a sensor

reading.

The use of the goal expression (CONCLUDE (P)) in a Cue indicates that the Act

should be invoked when (P) is added to the database. A Cue containing a Conclude

metapredicate can react to events that arise during the course of execution. An Act

whose Cue contains an Achieve or Test is said to be goal-invoked, while an Act whose

Cue contains a Conclude is fact-invoked. Execution systems may require short cue

speci�cations so that potentially applicable Acts can be rapidly identi�ed.

Precondition

The Precondition slot speci�es situational constraints that must be satis�ed for the

Act to be applicable. It can contain both Achieve and Test metapredicates. The

meaning of (TEST P) in the Precondition is that P must be true in order for the Act

to be applied. The meaning of (ACHIEVE G) is that the system must currently have

G as a goal in order for the Act to be applied.

Setting

The Setting speci�es additional Test metapredicates for the applicability of an Act.

This slot is equivalent functionally to the Precondition slot but typically is used to

separate out those conditions whose purpose is to instantiate variables.
4
The Setting

is separated from the Precondition to make the Act more easily understood.

Resources

The Resources slot indicates resources that are to be allocated for the duration of

the Act. This slot can be �lled only with the Use-Resource metapredicate. For an

Act containing an expression of the form (USE-RESOURCE (A B C)) in its Resources

4O-Plan refers to such conditions as \query conditions" [5].

14

slot to be applied, it is necessary that the resources (A B C) be free. These resources

would then be unavailable for use by other processes until execution of the Act �nishes.

Properties

The properties slot is a list of property/value pairs for the Act. Properties are used

for several purposes: to provide documentation, to represent information speci�c

to a particular application or planning/execution system, and to represent knowl-

edge that is not directly supported in ACT, generally because it is needed by either

the planner or the executor, but not by both. For example, Sipe{2 recognizes the

property Variables for quantifying variables as existential or universal, and Prs-cl

uses the property Decision-Procedure to designate an Act that is used for met-

alevel reasoning. The most interesting property from a representational standpoint is

Time-Constraints, the syntax for which is given in the Appendix and allows spec-

i�cation of any of the 13 Allen relations [1]. This property is used to specify time

constraints between plot nodes that cannot be represented by ordering arcs, e.g., two

actions must end at the same time. These constraints could alternatively be repre-

sented as arcs of di�erent color between plot nodes. There are no required properties,

although some are recommended for documentation purposes (such as Author). The

user is free to supply additional properties, as desired.

Figure 6 is an example act taken from the screen of the ACT-Editor, a system for

viewing and editing Acts (see Section 5). This act was originally written as a Sipe{2

operator in the military domain and was translated by our SIPE-to-ACT translator.

The environment conditions are displayed on the left side of the screen and the plot

nodes on the right side. This Act describes an operator for deploying an air force to a

particular location. The Cue is used to invoke the Act when the system has the goal

of achieving such a deployment. The Precondition enforces various constraints on the

intermediate locations to be used in the deployment. The Setting essentially looks up

the cargo that must go by air and sea for this deployment. The plot is described in

Section 4.3.

4.3 Plots

The plot speci�es the activities for accomplishing the purpose of an Act. The plot

consists of a directed graph, whose nodes represent actions and whose arcs impose

a partial order for execution. (Any temporal relationship between two nodes can be

represented using the Time-Constraint property.) Associated with each plot node is

a list of goal expressions for the node.

4.3.1 Metapredicates in Plot Nodes

All ACT metapredicates are allowed on plot nodes. However, at most one goal ex-

pression on each node can be built using the same metapredicate. Furthermore, the

metapredicates Achieve, Achieve-By, and Wait-Until are mutually exclusive: if one is

used on a node, the other is prohibited. Empty plot nodes are allowed.

For purposes of ordering their execution, the metapredicates are partitioned into

three groups, as shown in Table 3. The Context metapredicates, Test and Use-

15

Figure 6: Deploy Airforce Act

Metapredicate group Metapredicates

Context Test, Use-Resource

Action Achieve, Achieve-By, Wait-Until

E�ects Require-Until, Conclude

Table 3: Metapredicate Grouping for Execution in Plot

Resource, are executed �rst by the execution system. During planning, Use-Resource

makes a declaration that will be used by the planner (in Sipe{2, the plan critic

algorithms satisfy resource requirements). The Action metapredicate for the node,

either Achieve, Achieve-By, or Wait-Until (if there is one), is executed next. The Ef-

fects metapredicates, Require-Until and Conclude, are executed last by the execution

system. Require-Until sets up a protection interval that must be maintained, and

Conclude speci�es any e�ects to be added to the system database.

4.3.2 Plot Topologies

A plot has a single start node (a node with no incoming arcs) but may have multiple

terminal nodes (a node with no outgoing arcs). Loops can be speci�ed by connecting

16

the outgoing arc of one node to an ancestor node in the graph, as in the Iterative

Factorial Act in Figure 7. Execution of a plot requires successful execution of

all nodes along some path from the start node to some terminal node. Successful

execution of a node requires satisfaction of all of the node's goal expressions.

Plot nodes come in two types, conditional and parallel. Conditional nodes are

drawn as single-border rectangles, and parallel nodes are drawn as double-border

ovals. In Figure 6, nodes P503 and P512 are parallel, while all other nodes are con-

ditional. Arcs coming into and going out of a parallel node are conjunctive, meaning

that all of the arcs need to be executed. For the plot in Figure 6, P503 speci�es

that the air force is to be mobilized. Since it is a parallel node, its successors can

be invoked in either order or at the same time. P512 joins the parallel actions and

cannot begin execution until both of its incoming branches have completed. During

planning, both branches are inserted into the plan as unordered subplans.

Arcs coming into and going out of a conditional node are interpreted as disjunctive,

meaning that only one of the arcs need be executed. Consider �rst a disjunctive node

with multiple successor nodes. A planner produces a conditional plan following this

node. An executor executes the successor nodes until one is found whose goals are

satis�ed. At that point, execution `commits' to the branch headed by that successor

node and ignores all other branches. A disjunctive node with multiple incoming arcs

can be executed as soon as one of its ancestor nodes has been successfully executed.

As an example, consider the Act in Figure 7 for computing the factorial of a number

in an execution system (this Act is not intended for use by a planner). After execution

of N11817, the executor will nondeterministically choose one of its successor nodes

for execution. If the goal expression on this choice is satis�able, then the executor

continues executing that branch. If not, it will try to satisfy the other successor. In

this Act, one of the two successors will always succeed. In general, they might both

fail and then N11817 is said to fail.

Two consequences of the typing conventions should be noted: (1) if a node has

zero or one incoming edge and zero or one outgoing edge, it is irrelevant whether it

is a conditional or a parallel node, and (2) if one action is to be activated by only

one of its incoming edges and must activate all of its outgoing edges, then it must

be represented by a conditional node that collects the incoming edges followed by

a parallel node that collects the outgoing edges. The metapredicates may appear

on either one of the nodes, while the other node would be empty. We considered

alternative representations for plots that combine disjunctive incoming edges and

conjunctive outgoing edges, but the complexity of such representations makes them

hard to understand.

4.3.3 Temporal Reasoning

Any temporal relationship between two plot nodes can be represented in ACT.

Many applications require only strict orderings between nodes (represented as arcs

in the plot graph), but some require other temporal relationships (represented as

Time-Constraints). For example, in the military domain, cargo o�oad teams should

arrive at the destination either before or simultaneously with the �rst air transport.

Moving the o�oad teams cannot be ordered before moving the �rst transport; they

must have the option of traveling at the same time. While such constraints could

17

Figure 7: Iterative Factorial Act

be represented graphically, they are currently represented on the Time-Constraints

property as described in Section 4.2.

Arbitrary temporal constraints are currently used by planners but not by execu-

tors. Satisfying many temporal constraints involves planning/scheduling the execu-

tion times of actions, e.g., computing when to start two actions so that they will

end at the same time or be guaranteed to overlap. Execution systems could be ex-

tended to handle temporal constraints, but this brings up interesting issues of how

much planning and scheduling the executor should do to satisfy such constraints, and

whether it is still an execution system if it does signi�cant planning and scheduling.

In addition to constraints between nodes, ACT allows the representation of time

windows on individual plot nodes. A time window for a node speci�es its earliest

and latest allowable start times, earliest and latest �nish times, and minimum and

maximum durations. An inter-node constraint { between the endpoints of a pair of

plan nodes { is represented as an 8-tuple composed of the minimum and maximum

distance between the start of the �rst node and the start of the second node, and like-

wise the minimum and maximum start-�nish, �nish-start, and �nish-�nish distances.

Section 5 describes the processing of temporal constraints in Sipe{2.

18

4.4 Variables

ACT uses typed variables. In particular, the name of the variable indicates a class to

which any instantiation of the variable must belong. e.g., airplane.1 is a variable

for objects in the class airplane. By default, variables are treated as logical, meaning

that they denote a single, �xed object. As such, they can be bound to at most one

value during execution of an individual Act. (Each application of an Act is associated

with its own local variables, so the variables in di�erent applications of the same Act

are distinct.) Logical variables can be contrasted with the dynamic variables employed

in standard programming languages; a dynamic variable is rebound to di�erent values

throughout its lifetime.

It is sometimes necessary to use dynamic variables within Act plots. One such

situation arises during the writing of an Act that must execute a loop a certain number

of times. Another situation arises when an Act is to be used to monitor the value

of some changeable feature of the environment (such as the pressure measured by a

gauge) and to take certain steps when the value crosses some threshold. Such Acts

are di�cult to write using only logical variables.

For this reason, the ACT language supports rebinding of variables during execution

of an Act, provided the user explicitly speci�es where the rebindings are allowed.

These speci�cations are made by applying the function REBIND to variables for which

rebinding is to be allowed. For example, the expression

(ACHIEVE (= (REBIND X.1) (+ 1 X.1)))

expresses the goal of rebinding the variable X.1 to the value that is 1 greater than

the current value of X.1. This expression is di�erent from

(ACHIEVE (= X.1 (+ 1 X.1)))

which seeks to equate a value with a value that is 1 larger, and hence will always fail.

The Act Iterative Factorial in Figure 7 illustrates how the REBIND function can

be used to specify plots with loops.

4.5 ACT Metapredicates

In our description of the ACT metapredicates, the term \the system" is used generi-

cally to refer to any particular implementation (whether a planner or executor) that

makes use of the ACT language. The distinctions between executing and generating a

plan previously discussed result in slightly di�erent intended interpretations of some

of the ACT metapredicates by planning and execution systems. Here, we describe

these di�erent interpretations. It is possible that small advantageous changes in these

intended interpretations could be made based on special properties of the particular

planning and execution systems being used.

ACHIEVE The use of Achieve on a plot node speci�es a set of goals the Act would

like to achieve at that point in the partial plan. In the Cue, an Achieve

metapredicate indicates a goal-driven Act and tells the system the goals for

which the Act can be used. Thus, Achieve in the Cue is used for subgoaling.

In the Precondition and Setting slots, the planner ignores an Achieve since it

achieves goals in the plan, not during matching of these conditions. An Achieve

can be used in the Precondition or Setting by the execution system to check for

19

the existence of other system goals. This capability can be useful when writing

metalevel procedures that reason about the current goals of the system.

TEST This metapredicate speci�es formulae whose truth-value is to be ascertained.

While a planner must query its internal world model, an executor can query

its database and/or sense the world. When a Test is in the Precondition or

Setting slots, it determines if the Act should be executed after its Cue indicates

its relevancy.

A Test in the Cue is used only by the executor and indicates that the Act can

be used to actively test some condition by sensing the world. A Test in a plot

node is also handled di�erently by the two systems. During execution, a Test

in a plot node is used to determine whether the speci�ed formulae are true,

and if not, it determines which Acts should be executed to determine if the

speci�ed facts are true in the world. During planning, a Test in a plot node can

occur only after a conditional branching and is interpreted as a run-time test

to determine which conditional plan to execute. Any other Test in a plot node

is ignored.

CONCLUDE This metapredicate can be used on plot nodes to specify formulae

to be added to the system database. A Conclude in a Cue indicates an event-

driven Act that responds to some new fact becoming true. Such an Act may

e�ectively deduce consequences of an action by concluding further formulae.

WAIT-UNTIL This metapredicate appears only in plot nodes. In the executor, it

speci�es that execution of the Act is to be suspended until the indicated event

occurs. The planner implements Wait-Until by ordering the node containing

the Wait-Until after some other action that achieves the required condition.

ACHIEVE-BY This metapredicate appears only in plot nodes, and speci�es the

goals to be achieved as well as a set of Acts, one of which must be used to

achieve the goals. This focuses the system on a limited number of means for

achieving a goal.

REQUIRE-UNTIL This metapredicate appears only in plot nodes, and speci�es a

protection interval, namely a condition to be maintained until another indicated

condition for terminating this requirement occurs. The syntax for Require-Until

has two options. The general one is (req-wff term-wff). Here, req-wff is

a formula to be maintained until the termination condition term-wff becomes

satis�ed. The shorter option is simply term-wff, where the req-wff is assumed

to be the goal formula speci�ed for either the Achieve or Achieve-By metapred-

icate in the same node. An error arises if no such formula can be identi�ed.

Planners generally have a mechanism for maintaining protection intervals. Plan-

ning algorithms can modify partial plans that violate a Require-Until so that the

�nal plan will satisfy all Require-Untils. Require-Until is more di�cult to im-

plement in execution systems, since it is not clear what to do upon failure. Each

executor may have its own approach to handling failures; the implementation

in Prs-cl is described in Section 5.2.

20

USE-RESOURCE This metapredicate in the Resources slot means each of its argu-

ments is a resource throughout the plot. On a plot node, Use-Resource indicates

resources required only at that node. Currently, these are reusable resources

(i.e., they are not consumed), and the system will prevent other simultaneous

actions from using the same resource. Di�erent types of resources are an obvi-

ous place for extending the ACT formalism. In the executor, the resources are

allocated before the plot begins execution and are released when the Act either

succeeds or fails. The planner constructs a plan without resource conicts.

COMMENT This metapredicate can be used in any node or slot to provide docu-

mentation. It accepts a string as argument.

4.6 Examples

Three example Acts from the military domain illustrate how the ACT language can

be used to represent the kinds of knowledge about actions that are typical of plan

generation and execution systems. A full description of this domain can be found

elsewhere [19, 4], although su�cient details are provided here for a full understanding

of the examples. The examples show event-driven and goal-driven activities, appli-

cability conditions, resources, speci�cation of conditions to be maintained over an

interval, parallel actions, and deduction.

Figure 6 shows the Act for deploying an air force that encodes the same knowledge

as the Sipe{2 operator shown in Figure 1 and the Prs-cl KA shown in Figure 4.

The Cue indicates that the Act can be employed for the goal of deploying an air force

to a particular air�eld by a certain time. The Precondition and Setting must be true

in the world state before the operator can be applied. The Precondition requires the

initial position of the air force to be known, and determines intermediate seaports and

airports that are on known routes to the destination and that have transit approval.

The Setting constrains the two airports and seaports to be di�erent and partitions

the air force into two subparts.

The Plot is used either to expand a plan by inserting the plot as a subplan or to

begin execution of deployment. The Plot begins with a parallel node that uses an

Achieve-By metapredicate to force the mobilization of the air force by using an Act

named Mobilize. The successor nodes can then be executed in any order or simul-

taneously. These nodes begin two sequences of conditional nodes that use Achieve

metapredicates to cause the subparts of the air force to travel in parallel by air and by

sea via di�erent locations to the destination. Finally, there is a parallel node, which

joins these two parallel threads and aggregates the subparts together when they have

all reached the destination.

Figure 8 shows the Act Lookout-Red for establishing lookouts. Lookout-Red is

one means to achieve a lookout, and its Precondition speci�es it should be used only

when the area is under code-red conditions. The Setting �nds a suitable site for the

lookout and the correct sector for the supporting air cover. There is a Use-Resource

metapredicate in the Resources slot that requires the availability of a tfighter re-

source for the Act to be applicable.

The plot of Lookout-Red �rst uses an Achieve metapredicate to move the �ghters

to the correct location. The second node in the plot achieves an air cover of a certain

land sector and uses a Require-Until metapredicate to specify that this air cover be

21

Figure 8: An Act for Establishing a Lookout

maintained until the lookout has been achieved. If the air cover is terminated for

some reason before the lookout is established, the executor will use appropriate Acts

to respond to the violation, while the planner will modify the plan being generated

to avoid such a violation. Finally, the plot uses an Achieve metapredicate to get the

lookout unit to the correct location, and a Conclude metapredicate to record that the

lookout has now been established (which terminates the Require-Until condition).

Knowledge for deducing the context-dependent e�ects of actions is also commonly

used by planning and execution systems. Such a capability greatly enhances the

expressive power of a planning system, and is a feature of Sipe{2. ACT supports

this type of knowledge. For example, the Located-sector-up Act in Figure 9 deduces

the new region in which a movable object is located after that object has just moved

to a new sector (a region is at a higher level of abstraction and may contain several

sectors). This Act could be used by both the planner and executor to update their

world models whenever an object is moved. The Cue of Located-sector-up speci�es

an event-driven Act that responds to new facts about the location of an object in a

sector. The Setting instantiates region.1 to be the region of the new sector, and the

single plot node uses the Conclude metapredicate to specify that the object is now

22

Figure 9: An Act for Deducing Locations

located at region.1. Similar rules deduce that the object is no longer located at its

previous sector or region.

5 Implementing ACT

The ACT formalismhas been implemented in the Cypress system. Cypress is based on

versions of Sipe{2 and Prs-cl extended to support ACT; its architecture is depicted

in Figure 10.
5

Cypress provides a framework in which to create taskable, reactive

agents and supports the generation and execution of complex plans with parallel

actions, the integration of goal-driven and event-driven activities during execution,

and the use of replanning to handle run-time execution problems. Details on Cypress

can be found elsewhere [20]; here we describe the implementation and use of ACT

within the system.

For e�ciency, Prs-cl and Sipe{2 employ their own internal representations for

plans and actions. Cypress therefore uses ACT as an interlingua that enables these

two systems to share information. Cypress includes translators that can automati-

cally map Acts onto Sipe{2 and Prs-cl structures, along with a translator that can

map Sipe{2 operators and plans into Acts. Using ACT, Prs-cl can execute plans

produced by Sipe{2 and can invoke Sipe{2 in situations where run-time replanning

is required. The ACT-Editor subsystem supports the graphical creation and display

of Acts. The Gister-CL subsystem implements a suite of evidential reasoning tech-

5In particular, Cypress = SIPE + PRS. Sipe{2, Prs-cl, ACT-Editor, Gister-CL and Cypress
are trademarks of SRI International.

23

Figure 10: The Architecture of Cypress

niques that can be used during both planning and execution to analyze uncertain

information about the world and possible actions [16]. For example, Gister-CL could

be used to reason about uncertain information in order to choose among candidate

Acts in either the planner or executor.

In contrast to many other agent architectures, planning and execution operate

asynchronously in Cypress, in loosely coupled fashion. This approach makes it pos-

sible for the two systems to run in parallel, even on di�erent machines, without

interfering with the actions of each other. In particular, Prs-cl remains responsive

to its environment during plan synthesis.

5.1 Adequacy of ACT for Cypress

The ACT formalism supports the representational requirements for Prs-cl KAs and

Sipe{2 operators, deductive rules, and plans. When translating a Sipe{2 operator

to an Act, the purpose becomes a Cue with an Achieve metapredicate, the trigger (of

a deductive rule) becomes a Cue with a Conclude metapredicate, the precondition

becomes a Test metapredicate in both the Precondition and the Setting, and con-

straints on variables become a Test metapredicate in the Setting. Prs-cl KAs can

be translated to ACT as follows: the \invocation condition" becomes both Test and

Achieve metapredicates in the Cue, the \context" becomes both Test and Achieve

metapredicates in both the Precondition and the Setting, and the \e�ects" will be

encoded by Conclude metapredicates in the plot. The examples in Section 4.6 show

event-driven and goal-driven Acts, applicability conditions, resources, speci�cation of

conditions to be maintained over an interval, and deduction.

The SIPE-to-ACT translator can translate all Sipe{2 operators to ACT, as well

as translating fully instantiated plans. The system cannot yet translate a partial

plan with uninstantiated variables into ACT, since not all possible constraints on

24

variables generated by Sipe{2 have a corresponding formulation in ACT. This could

be handled by using the Properties slot to store an internal Sipe{2 representation,

but we have not found it necessary to translate partially developed plans. The ACT-

to-SIPE translator translates all Acts into either Sipe{2 operators or plans. This

enables Sipe{2 to plan with Acts that have been input by the user in the ACT-

Editor. The ACT-to-PRS translator converts Acts into a representation that can be

interpreted and executed in bounded time under the control of Prs-cl, thus making

all Sipe{2 operators accessible to Prs-cl. We have not implemented a translator

from KAs to ACT, as Prs-cl does not create Acts for use by other systems.

5.2 Extending SIPE-2 and PRS-CL for ACT

Since ACT generalizes the internal representations of Sipe{2 and Prs-cl, we ex-

tended these systems to support it. Fewer extensions were made to Sipe{2, since it

does not use Acts provided speci�cally for the executor. However, the executor must

execute plans generated by the planner, and this required several extensions to the

version of PRS described in the literature [9], resulting in Prs-cl.

Acts permit the representation of a number of important constructs not supported

by the original PRS. For instance, the metapredicates Use-Resource, Require-Until,

and Achieve-By have no counterparts in KAs. Furthermore, ACT plots provide a

more general representation of actions than is allowed by KAs, which do not support

parallel execution of actions within individual KAs. Prs-cl executes directed, pos-

sibly cyclic, graphs of actions that support parallel topologies, including all Sipe{2

plans and operators. This was a complex extension to PRS, as it involved a major

overhaul of the run-time representation structures and the introduction of control

mechanisms for activating/deactivating parallel execution threads. Prs-cl includes

a limited resource-handling capability to support the Use-Resource metapredicate.

Resources can be allocated and released, but only for the entire scope of an Act. This

supports the use of Use-Resource in the Resource environment condition of an Act;

Use-Resource in plot nodes is not currently supported by Prs-cl.

Prs-cl supports the Require-Until metapredicate, which can be used to specify

that a required condition (req-wff) remain true until some termination condition

(term-wff) is satis�ed. Prs-cl provides the Require-Until metapredicate with an

active maintenance semantics, which allows the required condition to be temporarily

violated without leading to a complete failure of the goal. Doing so enables the use

of repair procedures that can be applied in order to actively re-establish the required

condition. Repair procedures are generally domain-speci�c Acts designed for �xing

individual conditions. When the req-wff of a Require-Until is initially detected as

unsatis�ed, Prs-clwill post a repair goal of the form (ACHIEVE (REPAIR req-wff)).

If no repair Acts have been speci�ed or none succeed in re-establishing req-wff, the

Require-Until is then considered to have failed.

A Require-Until succeeds in Prs-cl when either req-wff is satis�ed when

term-wff becomes satis�ed, or the Act containing the Require-Until terminates with

req-wff satis�ed. While one could imagine having required formulas that are to be

protected beyond the scope of the Act that posted them, this is problematical in

Prs-cl for two reasons: (1) the system architecture would have to be changed to

allow Acts to post goals that would remain for processing after the Act posting the

25

goal had succeeded, and (2) there is no reasonable action to take after a failure when

the posting Act no longer exists.

The original PRS allows the speci�cation of goals but not any information indicat-

ing which KAs should be used to accomplish those goals. To support the Achieve-By

metapredicate, the Prs-cl interpreter loop was modi�ed to �lter candidate Acts to

select only from among those speci�ed by the Achieve-By. Both Sipe{2 and Prs-cl

were modi�ed to use the typed variable syntax of ACT.

Sipe{2 already supported the ACT metapredicates: it translates Use-Resource

directly to its resource construct, translates Wait-Until to its external condition

construct, translates a Require-Until using its protect-until construct combined

with using its plan-critic algorithms to modify any partial plan that violates a Require-

Until so that the �nal plan will satisfy all Require-Untils, and translates Achieve-By

to a process node for singleton Acts and a choiceprocess node when more than

one Act is given in the Achieve-By.

The only major extension to Sipe{2 was to support the Time-Constraints prop-

erty. At certain intervals in the plan generation process (the frequency can be option-

ally changed), Sipe{2 will translate its current actions, ordering links, and temporal

constraints for processing by General Electric's Tachyon system. Tachyon [2] is an

e�cient implementation of a constraint-based model for representing and maintain-

ing qualitative and quantitative temporal information. Tachyon propagates the con-

straints from Sipe{2 and combines them with the \commonsense" constraints that it

represents internally, returning an updated set of time windows on the actions that

are inserted into the plan [3].

The Appendix details portions of the ACT syntax not supported by Sipe{2 and

Prs-cl. Three limitations are important enough to mention here. First, the Time-

Constraints property is ignored by Prs-cl, although Prs-cl could be extended to

support most temporal constraints (see the discussion in Section 4.3.3). Second,

using an Achieve metapredicate in the Precondition or Setting slots will match only

if Prs-cl has posted a matching goal during the current execution cycle, making this

capability complicated to use properly. Third, the REBIND function is not supported

by Sipe{2, can be used only in plot nodes, can apply only to variables that do not

appear in gating slots, and can be used only for goals of the form

(ACHIEVE (= (REBIND X.1) <expression>)).

5.3 Using Acts

ACT is now the preferred representational medium for encoding knowledge about

actions for use by either Sipe{2 or Prs-cl. One consequence of this shared rep-

resentation is that the two systems can now be used cooperatively to complete the

planning/plan-execution cycle. The military operations domain demonstrated Sipe{2

and Prs-cl cooperating on the same problem for the �rst time.

In nontrivial domains, the complexity of plans and knowledge about actions re-

quires a graphical interface to input Acts, understand generated plans, and monitor

system behavior. We have implemented the ACT-Editor for displaying, editing, and

inputing Acts. Acts generated by Sipe{2 can be quite complex; for example, a typi-

cal plan in the military domain produces an Act with over 200 plot nodes in it. The

ACT-Editor includes a simpli�er that streamlines the logical structure of an Act,

26

eliminating both unnecessary plot nodes and redundant ordering links. In addition, a

user can vary the amount of detail to be presented on each plot node | an essential

feature since plot nodes generated by Sipe{2 often have several metapredicates with

large goal expressions. The ACT-Editor e�ectively provides a graphical knowledge

editor for both Sipe{2 and Prs-cl, and is described in detail elsewhere [20].

A typical use of Acts in Cypress works as follows. The plans generated by the

planner are translated to Acts for execution. The executor executes the plans pro-

duced and uses Acts to respond to events, perform lower-level actions that have not

been planned, and invoke the planner when replanning is required.

While both the planner and executor can use Acts at all levels of detail, it is neces-

sary in realistic domains to �x a level of detail below which the planner will not plan.

Planning to the lowest level of detail is often not desirable, and the combinatorics can

be overwhelming. For example, it is not desirable to plan large military operations

down to the most minute detail. Similarly, it is often not desirable for the executor

to respond to certain high-level goals without a plan. For example, a reactive system

should not attempt to implement a Desert Storm-sized operation without �rst having

a strategic plan. Acts at interim levels of detail may be advantageously used by both

planning and execution systems.

In the military domain, we �xed a level of abstraction to serve as an interface level

for the planner and executor. The planner plans down only to this level to produce a

plan, while the executor will accept plans at that level and attempt to execute them

using actions from that level of abstraction or below. The level of interface is currently

encoded into the Acts themselves using the class property to specify which Acts are

to be used by the planner and/or executor. For example, the Deploy Airforce Act

from Figure 6 is used only by the planner, the Lookout Act from Figure 8 is used

only by the executor, and the Located-sector-up Act from Figure 9 is used by both.

Once the planner has produced an Act, the execution is initiated by posting a

goal that matches the Cue of the plan Act. The executor will then recognize that

the newly loaded Act can be used to solve the goal and will begin executing it.

This Act serves as a kind of outline for establishing the top-level goal, with the

executor choosing appropriate lower-level Acts to satisfy subgoals in the plan. During

execution of the plan, the executor monitors the world for any events that might

trigger additional activity, such as new goals being posted or changes in the world

that require immediate attention. Provided that Acts have been written to address

such events, the executor will respond by simultaneously executing those Acts in

addition to the original plan. Certain failures will cause the executor to invoke the

planner to do run-time replanning. The planner attempts to modify the failed plan

and ensures that the future consequences of the new plan do not interfere with the

still-active execution threads of the original plan [20].

6 Comparison to Other Work

The complexity of the plans and the necessity of using them is what di�erentiates our

work from previous approaches to the integration of planning and execution. Most of

the previous work on combining planning and reactive execution has been driven by

robotics applications. Systems for mobile robots generally emphasize execution, using

only precomputed plans or simple plans generated at run-time. Such systems often

27

operate without a plan and use a plan only when the planner happens to produce a

plan that will work in the current situation. In contrast, domains such as military

operations planning require that the planner exercise greater inuence over the exe-

cution system. The planner should generate a plan that will serve as the principal

guidance for the executor, which will generally have no idea how to accomplish the

top-level goals appropriately until the planner has generated a plan. There may be

serious consequences if the plan is ignored.

Lyons and Hendricks [14] describe an approach in which the planner monitors

the execution of the reactive system and speci�es adaptations to the reactive system

that will improve its performance relative to achievement of the given goals. They

require that these incremental adaptations improve system performance before they

are added to the reactor. The RAP system [6] also uses simple plans to modify the

reactive control of a robot. These and similar approaches use adaptive modi�cations

to rule sets, rather than employing the full look-ahead reasoning of a generative

planner. The ATLANTIS system [7] is a heterogeneous, asynchronous architecture

for controlling mobile robots. Its deliberator employs a \simple linear planner" and

its controller does not understand the plan representation (thus allowing di�erent

planners to be used). Rather, the planner provides some previously designated inputs

that the sequencer can use.

These approaches su�ce for robot applications, where complex plans are not nec-

essary. In more complex domains, high-level plans are essential. Approaches that

adapt the executor to improve its performance may not be feasible because of the

complexity of having many parallel execution threads. In our implementation, the

executor will suspend problematic execution threads, request the planner to modify

the plan, continue execution of nonproblematic actions while waiting for the planner,

implement lower-level behaviors while waiting, and restart execution when a modi�ed

plan is received. Hanks and Firby [11] discuss the issues involved in integrating plan-

ning and execution, including issues not addressed in this paper, such as reasoning

about the utility of deliberation. They do not present an implemented formalism

beyond RAP.

McDermott [15] describes RPL, a Lisp-like programming language for writing

programs that will produce goal-directed behavior and reactive response in a robot

executing the program. This work is tailored to the robot domain, and RPL is obscure

for use as a plan representation with which humans will interact. RPL is suited for

producing specialized modules that implement a particular behavior, while ACT is

designed as an interlingua for general-purpose functional modules. Rex [12] is another

system designed for programming behaviors for intelligent reactive systems.

The motivations for ACT are similar to those of the KRSL language [13]. In fact,

ACT has been one of the formalisms driving the design of the KRSL speci�cation for

plans. There are a number of di�erences, however. ACT is more focused, trying only

to get planning and execution systems to speak a common language, while the KRSL

e�ort is more ambitious, trying to develop a common language for many types of

systems, including systems for planning, execution, scheduling, simulation, temporal

reasoning, database management, and other tasks. Furthermore, KRSL does not yet

provide the same degree of support for execution activities as does ACT.

28

7 Conclusion

The ACT formalism supports the representation of knowledge necessary for the gen-

eration and execution of plans suitable for use in complex and dynamic environments.

ACT serves as an interlingua that supports heterogeneous combinations of AI tech-

nologies in planning and reactive control.

The use of ACT as an interlingua to represent knowledge about actions for both

Sipe{2 andPrs-cl in practical applications attests to the practicality of the language.

Acts have enabled Sipe{2 and Prs-cl to cooperate on the same problem for the

�rst time, using a common library of action representations. The planner generates

and modi�es plans while the executor executes the plans produced and uses Acts

to respond to events, performs lower-level actions that have not been planned, and

invokes the planner when replanning is required.

The development of Sipe{2 and Prs-cl has been driven by their applications to

numerous problem domains; similarly, the development of ACT has been driven by

the representations of these two systems. The ability to represent all the constructs

in Prs-cl and Sipe{2 implies that the ACT formalism is su�cient for a wide range

of interesting problems, since both these systems have been applied to several prac-

tical problems. The integrated planning and execution demonstrated in the military

problem shows that ACT has reasonable computational properties, as well as being

reasonably expressive. For this application, ACT was used to represent knowledge

about actions and plans containing several hundred plot nodes.

ACT is not speci�c to our implementation and is a general-purpose representation

language that could be used to share knowledge between many di�erent execution

and planning systems. However, there are many types of knowledge that could be

of use to an integrated planning-execution system that are not yet included in ACT.

ACT is an evolving entity that will be extended as additional features are required.

Possible future extensions include goal expressions that are matched in the presence

of uncertainty, actions with uncertain e�ects, knowledge about the utility of actions

or Acts, reasoning about the beliefs of other agents, partial achievement of goals, and

extended resource reasoning and scheduling capabilities.

29

Acknowledgments

The research described in this paper was supported by ARPA and Rome Laboratory

as part of their Planning Initiative under Contracts F30602-91-C-0039 and F30602-

90-C-0086. The people who designed and implemented the ACT formalism in Cypress

are David Wilkins, Karen Myers, John Lowrance, Leonard Wesley, Janet Lee, and

Peter Karp. Marie Bienkowski, Marie desJardins, and Roberto Desimone designed

and implemented the processing of temporal constraints and the military operations

planning operators.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications

of the Association for Computing Machinery, 26(11):832{843, 1983.

[2] Richard Arthur and Jonathan Stillman. Tachyon: A model and environment for

temporal reasoning. Technical report, GE Corporate Research and Development

Center, 1992.

[3] Marie Bienkowski and Marie desJardins. Planning-based integrated decision sup-

port systems. In Proceedings of the 1994 Conference on AI Planning Systems,

Chicago, IL, 1994.

[4] Marie Bienkowski, Marie desJardins, and Roberto Desimone. Generative plan-

ning to support military operations planning. In 1994 Symposium on Command

and Control Research and Decision Aids, Monterey, CA, 1994.

[5] K. Currie and A. Tate. O-plan: The open planning architecture. Arti�cial

Intelligence, 52(1):49{86, 1991.

[6] R. J. Firby. An investigation into reactive planning in complex domains. In

Proceedings of the 1987 National Conference on Arti�cial Intelligence, pages 202{

206, American Association for Arti�cial Intelligence, Menlo Park, CA, 1987.

[7] Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots. In Proceedings of the 1992

National Conference on Arti�cial Intelligence, pages 809{815, American Associ-

ation for Arti�cial Intelligence, Menlo Park, CA, 1992.

[8] Michael P. George�, F. F�elix Ingrand, and Amy L. Lansky. Procedural Reasoning

System User Guide. SRI International Arti�cial Intelligence Center, Menlo Park,

CA, 1989.

[9] Michael P. George� and Fran�cois F�elix Ingrand. Decision-making in an embedded

reasoning system. In Proceedings of the 1989 International Joint Conference

on Arti�cial Intelligence, American Association for Arti�cial Intelligence, Menlo

Park, CA, 1989.

[10] M. L. Ginsberg. Knowledge interchange format: The KIF of death. AI Magazine,

12(3):57{63, 1991.

30

[11] Steve Hanks and R. James Firby. Issues and architectures for planning and

execution. In Katia P. Sycara, editor, Proceedings of the Workshop on Inno-

vative Approaches to Planning, Scheduling and Control, pages 59{70. Morgan

Kaufmann Publishers Inc., San Mateo, CA, November 1990.

[12] L. P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning

about Actions and Plans: Proceedings of the 1986 Workshop, pages 395{410.

Morgan Kaufmann Publishers Inc., San Mateo, CA, 1987.

[13] Nancy Lehrer. KRSL speci�cation language. Technical Report 2.0.2, ISX Cor-

poration, 1993.

[14] D. M. Lyons and A. J. Hendricks. A practical approach to integrating reaction

and deliberation. In First International Conference on Arti�cial Intelligence

Planning Systems, pages 153{162, College Park, Maryland, 1992.

[15] D.McDermott. Transformational planning of reactive behavior. Technical Report

CSD-RR-941, Yale University, Department of Computer Science, 1992.

[16] Thomas M. Strat and John D. Lowrance. Explaining evidential analyses. Inter-

national Journal of Approximate Reasoning, 3(4):299{353, July 1989.

[17] David E. Wilkins. Practical Planning: Extending the Classical AI Planning

Paradigm. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

[18] David E. Wilkins. Can AI planners solve practical problems? Computational

Intelligence, 6(4):232{246, 1990.

[19] David E. Wilkins and Roberto V. Desimone. Applying an AI planner to military

operations planning. In M. Fox and M. Zweben, editors, Intelligent Scheduling,

pages 685{709. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1994.

[20] David E. Wilkins, Karen L. Myers, John D. Lowrance, and Leonard P. Wes-

ley. Planning and reacting in uncertain and dynamic environments. Journal of

Experimental and Theoretical AI, 7(1):197{227, 1995.

31

Appendix: ACT Syntax

This appendix presents the syntax for de�ning Acts and documents the restrictions

on Acts that are to be translated to Sipe{2 operators and PRS KAs.

ACT Speci�cation

The following Backus-Naur Form (BNF) documents the syntax for ACT metapredi-

cates accepted by the ACT-Editor and ACT-Veri�er. For those unfamiliar with BNF,

the form on the left of the symbol ::= can be replaced by the form on the right. Items

in the typewriter font (e.g., item) represent actual primitives to be used while itali-

cized text (e.g., sexprression) de�nes primitives descriptively. Square brackets [] are

placed around optional objects. The symbol j represents \or", the
�
represents any

number of repetitions including zero, and the
+
represents any number of repetitions

greater than one. Braces fg without �
or

+
appended simply indicate grouping.

Logical Formulas

w� ::= (pred-name ftermg�) j (UNKNOWN (pred-name ftermg�)) j
(NOT w�) j (AND fw�g+) j (OR fw�g+)

term ::= simple-term j function j (REBIND variable)
simple-term ::= individual j variable
variable ::= fclassg . fintegerg
function ::= (fn-name ftermg�)

pred-name ::= the name of a predicate

fn-name ::= the name of a function

individual ::= a domain object

class ::= the name of a class

integer ::= a positive integer

Metapredicates

meta-pred ::= test j conclude j achieve j achieve-by
j use-resource j wait-until j require-until

test ::= (TEST fw� j w�-listg)

achieve ::= (ACHIEVE fw� j w�-list g)

achieve-by ::= (ACHIEVE-BY fw�+acts j (fw�+actsg+))

conclude ::= (CONCLUDE fw� j w�-listg)

use-resource ::= (USE-RESOURCE fsimple-term j (fsimple-termg+) g)

wait-until ::= (WAIT-UNTIL fw� j w�-list g)

require-until ::= (REQUIRE-UNTIL f w� j w�-pair g)

w�-pair ::= (w� w�)

w�-list ::= (fw�g+)
w�+acts ::= (w� (factg+))
act ::= the name of an Act

32

Plot Nodes The actions associated with plot nodes are speci�ed using metapredi-

cates. All metapredicates can be used on plot nodes. However, at most one instance

of each metapredicate is allowed per node. Furthermore, the metapredicates ACHIEVE,

ACHIEVE-BY and WAIT-UNITL are mutually exclusive: if one is used on a node, the

other is prohibited. Plot nodes can contain a comment string. Finally, no variable

mentioned in the environment nodes can appear within the scope of a REBIND operator

on a plot node.

Environment Conditions (Slots) The gating slots, namely Cue, Setting, Test

and Resources, are �lled with metapredicates. Each gating slot has its own list of

accepted metapredicates. As with plot nodes, at most one instance of each metapred-

icate is allowed per slot. Unlike plot nodes, certain environment nodes require the

presence of some metapredicates. The constraints on the use of metapredicates for

gating environment nodes is summarized here, building on the BNF notation de-

�ned above. All gating slots also support a Comment entry, speci�ed as a string.

Metapredicates in the environment slots cannot use the REBIND operator.

Cue ::= (test) j (achieve) j (conclude)

Preconditions ::= (test) j (achieve) j (test achieve)

Setting ::= (test)

Resources ::= (use-resource)

The Comment and Properties slots are non-gating. The Comment slot can be

�lled with a string that documents the Act.

The Properties slot is �lled with a property list. The Sipe{2 recognizes two

special properties: Variables for declaring variables, and Time-Constraints for speci-

fying temporal constraints. The Variables property should have as its value a list of

quanti�er-pairs, each of whose �rst element is existential or universal. The Time-

Constraints property speci�es ordering constraints between plot nodes that cannot be

represented by the precedence arcs of the plots. Two types of constraints are used:

time windows on nodes and inter-node constraints. The syntax for these properties

is presented below.

Values for Time-Constraints Property

TC-value ::= (ftime-constraintg+)
time-constraint ::= (allen-reln node node [fintegerg-fintegerg]) j

(qual-relation (point node) (point node))

allen-reln ::= starts j overlaps j before j meets j during j
finish j finishes j equals

qual-relation ::= later j later-eq j earlier j earlier-eq j equals

point ::= start j end

node ::= pred-name[.integer] j act[.integer] j plotnode
plotnode ::= a symbol

33

Values for Variables Property

Var-value ::= (fvar-declg+)
var-decl ::= (decl variable)

decl ::= univeral j existential

PRS Restrictions

The following restrictions are placed on Acts to be translated to PRS knowledge areas

(KAs).

� The UNKNOWN operator for construction of formule is not supported.

� USE-RESOURCE metapredicates on plot nodes are ignored.

� The Time-Constraints property is ignored.

� The REBIND function can be used only in plot nodes, can only apply to variables

that do not appear in gating slots, and can only be used for goals of the form

(ACHIEVE (= (REBIND X.1) <expression>)).

� The CONCLUDEmetapredicate cannot be applied to either an explicit disjunction

such as (OR P1 . . .Pk), or an explicit disjunction embedded within a conjunc-

tion such as (AND (Q) (OR P1 . . .Pk)). This restriction is necessary because

(a) PRS does not support the insertion of disjunctive facts into its database,

and (b) when given a conjunctive fact to be concluded, PRS adds the individual

conjuncts into the database.

(NOTE: PRS will only ag the use of explicit disjunctions written using the

operator OR. Implicit disjunctions such as (NOT (AND (P) (Q))) are not recog-

nized.)

In addition, the following conventions should be noted:

� An OR is equivalent to the �rst disjunct that succeeds (as in Lisp), rather than

a logical disjunction that considers instantiations from all disjuncts.

� Metapredicates of the form

(ACHIEVE (wff1 . . .wffk))

(ACHIEVE (AND wff1 . . . wffk))

are equivalent for plot nodes. For environment nodes, the latter is translated

to (GOAL� (ACHIEVE (AND wff1 . . . wffk))) while the former is translated to

(& (GOAL� (ACHIEVE wff1)) . . .(GOAL� (ACHIEVE wffk))). The analogous

convention holds for the translation of metapredicates of the form (TEST (wff1

. . .wffk)).

34

SIPE-2 Restrictions

The following are restrictions placed on Acts that are to be translated to Sipe{2 op-

erators. The ACT->SIPE translator issues a warning message whenever a restriction

is violated. A plot must have only one terminal node, and not contain loops (although

loops in Sipe{2 can be represented by a special parallel-loop action in an Achieve-By

metapredicate).

The system translates only Acts whose class property (in the Properties slot) is

one of: state-rule, causal-rule, init-operator, init.operator, operator,

both.operator. Acts with class operator correspond to action operators in Sipe{

2 while Acts having any other of the above class properties correspond to Sipe{2

deductive rules. We use the term nondeductive to refer to the former class of operators

and deductive operator to refer to the latter class.

� For logical formulae:

{ AND should not be nested inside NOT, OR, or AND.

{ OR should not be nested inside NOT or OR.

� Formulae containing OR are allowed in Test metapredicates only.

� The REBIND construct is not supported.

� The predicates = class in� range > < <= >= are trans-

lated to Sipe{2 constraints. They should not be used inside an OR.

� An OR is equivalent to the �rst disjunct that succeeds (as in Lisp), rather than

a logical disjunction that will consider instantiations from all disjuncts.

� For the Cue slot:

{ TEST is not supported.

{ ACHIEVE and CONCLUDE can be applied only to atomic formulas, negated

atomic formulas, and conjunctive formulas.

{ Deductive operators must have a CONCLUDE metapredicate in the Cue, and

all plot nodes except the start node are ignored. Nondeductive operators

must have an ACHIEVE metapredicate in the Cue.

� ACHIEVE is ignored in the Precondition slot.

� The ACT->SIPE translator does handle the option of using the names of plotn-

odes in the Time-Constraints property.

35

