
Working Document:
Revisions as of October 9, 1998

Summary of
Multiagent Planning Architecture
MPA Version 1.7

SRI Project 7150
Contract No. F30602-95-C-0235

By: David E. Wilkins, Senior Computer Scientist
Karen L. Myers, Senior Computer Scientist
Marie desJardins, Computer Scientist
Pauline M. Berry, Computer Scientist
SRI International

Contents

1 Introduction 1

2 The Multiagent Planning Architecture 2

2.1 Planning Cells . 3

2.2 Common Plan Representation . 5

2.2.1 Plan Model . 6

2.2.2 ASCII Acts . 7

3 MPA Infrastructure 7

3.1 Agent Construction and Wrappers . 7

3.2 How Will Agents Communicate? . 8

3.3 MPA Messages . 9

4 Plan Servers 10

4.1 Communication and Plan Performatives . 11

4.2 Annotations . 11

4.3 Triggers . 13

4.4 Queries . 14

4.5 Act Plan Server . 15

5 Planning-Cell Managers 16

5.1 Meta Planning-Cell Manager . 17

5.2 Overview of the PCM . 19

5.3 Planning Cell Characteristics . 20

5.4 PCM Invocation . 21

6 Integrating Planning, Scheduling and Execution 22

6.1 Continuous Planning and Execution . 22

6.1.1 Executor Agent . 23

6.2 Planning and Scheduling . 24

6.2.1 Planner Agents: Search Manager and Critic Manager 24

6.2.2 Scheduler Agent . 26

i

7 Single Planning Cell Configuration 27

7.1 Control of the Planning Process . 29

7.2 Demonstration Scenario . 29

8 Multiple Planning Cell Demonstrations 30

8.1 June 1997 Demonstration . 30

8.2 TIE 97-1 Demonstration . 32

8.2.1 ACP Knowledge Base . 32

8.2.2 Demonstration Flow . 33

9 Future Work 34

10 Summary 34

ii

1 Introduction

The Multiagent Planning Architecture (MPA) is a framework for integrating diverse technolo-

gies into a system capable of solving complex planning problems. MPA has been designed

for application to planning problems that cannot be solved by individual systems, but rather

require the coordinated efforts of a diverse set of technologies and human experts. Software

agents within MPA are expected to be sophisticated problem-solving systems in their own

right, and may span a range of programming languages. MPA’s open design facilitates rapid

incorporation of tools and capabilities, which in turn encourages experimentation with new

technologies.

MPA provides protocols to support the sharing of knowledge and capabilities among

agents involved in cooperative planning and problem solving. MPA allows planning systems

to capitalize on the benefits of distributed computing architectures for efficiency and robust-

ness. For example, MPA is capable of generating multiple, alternative plans in parallel.

Agents within MPA share well-defined, uniform interface specifications, so that we can

explore ways of reconfiguring, reimplementing, and adding new capabilities to the planning

system. This paper describes at least two areas in which such exploration was undertaken. The

first is exploring alternative strategies for integrating planning and scheduling. We decom-

pose a DARPA/Rome Laboratory Planning Initiative (ARPI) planning system and an ARPI

scheduling system into component modules, where each component becomes its own plan-

ning agent (PA). This decomposition allows these ARPI technologies to be more tightly and

flexibly integrated.

A second area of exploration is the definition of organizational units for agents that permit

flexible control policies in generating plans. Within MPA, notions ofbaselevel planning cells

andmetalevel planning cellshave been defined, where the baselevel cells provide sequential

solution generation and the metalevel cells employ baselevel cells to support parallel genera-

tion of qualitatively different solutions. Metalevel cells provide the ability to rapidly explore

the space of solutions to a given planning problem. Meta-PAs (PAs that control other PAs) de-

fine different control strategies among the PAs under their control. For example, one meta-PA

might tightly couple planning and scheduling while another might loosely couple them. At a

higher level, meta-PAs might use different algorithms to accept a stream of planning requests

and distribute them to PAs that are not already busy.

The MPA framework has been used to develop several large-scale problem-solving sys-

tems for the domain of Air Campaign Planning (ACP), which was first used in ARPI’s IFD-4

1

(Fourth Integrated Feasibility Demonstration). MPA was used as the infrastructure for ARPI’s

Technology Integration Experiment (TIE) 97-1, providing plan generation and evaluation ca-

pabilities. This application integrated a set of technologies that spanned plan generation,

scheduling, temporal reasoning, simulation, and visualization. These technologies cooper-

ated in the development and evaluation of a complex plan containing over 4000 nodes. This

integration has validated the utility of MPA for combining sophisticated stand-alone systems

into a powerful integrated problem-solving framework.

This paper is a working document that describes MPA from the point of view of someone

wishing to create an MPA agent. This project’s home page can be found at

http://www.ai.sri.com/˜wilkins/mpa

2 The Multiagent Planning Architecture

MPA is organized around the concept of aplanning cell, which consists of a collection of

agents committed to a particular planning process. A planning cell contains two distinguished

agents — theplanning-cell managerand theplan server. Theplanning-cell managercom-

poses a planning cell drawn from a community of agents and distributes the planning task

among the selected agents. Theplan serveris the central repository for plans and plan-related

information during the course of a planning task. It accepts incoming information from PAs,

performs necessary processing, stores relevant information, and makes this information ac-

cessible to any PA through queries. An optionalknowledge serverstores application-specific

information of relevance to the planning process, which may be shared among all cell agents.

The knowledge server might store, for example, situation models, an object hierarchy, legacy

databases, and the set of action descriptions to be used in planning.

MPA also supports the use of multiple planning cells to simultaneously produce alternative

plans. Multiple planning cells are controlled by ameta planning-cell manager, which accepts

a stream of asynchronous planning requests and distributes them to available planning cells.

A meta planning-cell manager implemented in MPA is described in Section 5.1.

Supporting the MPA architecture requires a significant amount of infrastructure. One com-

ponent is ashared plan representationthat can be understood by all planning agents. MPA

employs the Act formalism for this purpose, as described in Section 2.2. Additional compo-

nents include a communication substrate to support multithreaded interagent message passing

across networks, and tools to facilitate the construction of agents and planning cells. MPA

2

provides both a message format and a message-handling protocol to support the sharing of

knowledge among agents involved in cooperative plan generation. With MPA messages, soft-

ware modules written in different programming languages can easily communicate. We have

demonstrated agents written in C, C++, LISP, and Java communicating with each other.

In this section, we describe planning cells and the common plan representation. MPA

intends to have PAs communicate using the common plan representation and the agent com-

munication languages being developed by other ARPI projects, but other alternatives are being

explored as well. Agent-construction tools and communication capabilities are described in

Section 3, plan servers are described in Section 4, and planning-cell managers are described

in Section 5.

We have reviewed emerging standards for distributed architectures and attempted to be

consistent when possible with other agent frameworks, particularly the ARPA efforts in I3

and AITS (formerly JTF-ATD). To better understand the capabilities our architecture ought

to support and to help make MPA as useful as possible to the broader ARPI community, we

surveyed the software tools and products that are available or under development by ARPI

researchers. The results of this survey will identify technologies that are sufficiently far along

in their development to be considered for inclusion as PAs.

2.1 Planning Cells

MPA planning cells are hierarchically organized collections of planning agents that are com-

mitted to one particular planning process for a given period of time (see Figure 1). Each

planning cell has a meta-PA that serves as the planning-cell manager (or, simply thecell man-

ager), which decomposes a planning task and distributes it to the PAs of the planning cell.

Cell managers hierarchically decompose a planning task and distribute it to the PAs and

meta-PAs of a planning cell, as shown in Figure 1. The planning cell is the closure of all

PAs (and meta-PAs) registered by the cell manager and any PAs they invoke. Individual cell

managers compose their planning cells to reflect their own planning approach. For example,

a mixed-initiative meta-PA may include human agents in its cell. One cell manager might

loosely couple planning and scheduling, while another might tightly couple them.

The cell manager maintains a Planning-Cell Designator (PCD) that defines a set ofrolesto

be filled. A role constitutes a capacity or responsibility, such as plan generation or scheduling.

Each role must be filled by an agent with the capabilities required by that role. The PCD

3

Figure 1: The composition of a planning cell. A meta-PA acting as the cell manager both
distributes the planning task to both PAs and other meta-PAs, and oversees the overall planning
process.

records the name of the agent that fulfills each role in the current planning cell at any given

point in time. (The agent playing a role may change during the planning process.) The cell

manager stores and maintains the PCD, broadcasting changes to the cell agents as appropriate.

Local copies of the PCD are maintained by each agent to eliminate frequent queries to the cell

manager for current role assignments (thus substantially reducing interagent message traffic).

Composing a planning cell involves establishing communication with an agent for each

specified role in the PCD, where these agents are then committed to this particular planning

process. The cell manager registers the agents that are part of the cell. Currently, our cell man-

ager either uses a prespecified planning cell or permits a human user to select a planning cell

from a set of specific agents. As MPA expands to include different technologies with similar

or overlapping capabilities, it will be desirable to compose a planning cell by broadcasting for

agents with the required capabilities. Note that if several agents can fill a role, the role may

be filled by a broker agent that would then be responsible for routing any messages it receives

to other agents. Most ARPI technologies currently have capabilities or input languages that

differ from other similar technologies, so automatic construction of a planning cell by widely

broadcasting a message is not yet feasible.

Developing acapabilities modelfor agents is not part of the charter of MPA. Nevertheless,

each planning agent should describe inputs, outputs, side effects, and other attributes such as

whether it reads and/or writes from/to the plan server, what answers it produces, whether it

4

produces a single answer or multiple answers, whether all possible answers are returned, and

whether the answer returned is optimal or just a heuristic selection. This enables one agent to

replace another in a planning cell simply by meeting the stated specifications.

A key distinction made in the I3 architecture is that between environments and config-

urations. An environment corresponds, in our architecture, to the entire family of available

agents and the services they provide. A configuration corresponds to a specific planning cell

that has been configured by a metaplanning agent to solve a specific planning problem. The

I3 architecture refers to templates that are used to generate configurations. In our architecture,

we use the more general notion of metaplanning agents, who might in turn use a template to

generate a planning cell (configuration).

2.2 Common Plan Representation

We reviewed ongoing efforts in a number of DARPA programs to develop common ontologies

and plan representations, including KIF, Ontolingua, the JTF C2 schema, and CORBA. Until

an adequate common plan representation (CPR) at a low enough level of detail emerges as

the ARPI standard, we are using the Act formalism [16] as the MPA plan representation. An

extended version of Act may be suitable for fleshing out the JTF CPR in enough detail to make

it usable.

Act has been used as an interlingua in a number of SRI projects, including both DARPA

and NRaD projects, and has been used by the University of Michigan and Orincon in the

Ships Systems Automation program of DARPA [2]. Act currently can represent planning and

execution operators, as well as completely instantiated plans. As part of MPA, Act has been

extended to support hierarchical plans at multiple levels of detail, using the concepts of task,

plan, and action network, as described in Section 2.2.1. A separate document summarizes Act

and defines its syntax [10].

We intend to modify MPA as required to be compatible with any ARPI-standard CPR. Act

has shortcomings as a CPR, and will be extended as long as it remains the CPR of choice. We

have extended it to incorporate the MPA plan model, and to support ASCII Acts. MPA records

global data about a plan as annotations (see Section 4), and these may need to be considered

as part of the CPR.

An Act is the basic structure used to represent a plan or plan fragment in the Act formalism.

The Act-Editor system supports the graphical creation, manipulation, browsing and display of

5

Figure 2: The structure of plan information: Each planningtaskcan be composed of several
alternativeplanswhich in turn are composed of increasingly detailed expansions of the plan
calledaction networks.

Acts, thus serving as a graphical knowledge editor for systems that use Act. The Act-Editor is

in use at several sites and has a manual describing its capabilities [9].

2.2.1 Plan Model

Planning cells can be generating different alternative plans for the same task, or working on

different tasks. Thus, the plan server and all MPA messages must keep track of the task and

the plan alternative as well as the actual action network.1

The MPA plan model distinguishes the concepts of task, plan, and action network, as

shown in Figure 2. Most MPA messages that denote a plan require 3 arguments: the task, the

plan, and the action network. Certain message are plan-level queries or updates, which do not

need an action network argument.

A task is a set of objectives, the current situation, and other similar information. For

example, a task may include actions that must be included in any plan, or advice, but such

things may also be included as assumptions on a plan.

A number of alternativeplanscan be produced for a given task. A plan consists of the

whole set of information about the course of action generated for this task, possibly including

multiple views and multiple action networks. Each plan might have a set ofassumptions.2

1We have included Austin Tate and Adam Pease in discussions of the MPA plan model to maintain compati-
bility with the JTF common plan representation.

2Whether a particular statement should be a part of the task or an assumption in the plan is a fuzzy distinc-
tion that can be made appropriately for a given domain. This will allow users to talk about tasks, plans, and
assumptions in way that may correspond more naturally to their given domain.

6

An action networkis a description of the plan at some point it its development such that all

agents querying that action network will get the same partial order of goals and actions. We

will refer to the elements of an action network asnodes, where a node can represent an action

or a goal (among other things). Action networks are intermediate results in some planning

process and may be at multiple levels of abstraction.

2.2.2 ASCII Acts

Before MPA, Acts were represented as Grasper-based data structures [6, 10] to support their

display display. Because plans and plan fragments must be easily communicated between

planning agents, we defined a syntax for ASCII specification of Acts, and documented it

in BNF. We have extended the Act-Editor to print Grasper-based Acts and files of Acts in

this ASCII specification, and to read this specification and create Grasper-based Acts, thus

allowing graphical display and manipulation of ASCII Acts.

A separate document summarizes Act, describes functions for manipulating ASCII Acts,

and specifies the current syntax for ASCII Acts [10] (superseding the appendix in our in-depth

description of Act [16]).

3 MPA Infrastructure

An MPA planning cell requires low-level communication capabilities to support asynchronous

agent communication across networks, particularly the Internet. Within MPA, software mod-

ules written in different programming languages can easily communicate. Utilities to facilitate

the construction of agents and planning cells are also required. For example, a capabilities

model will aid in planning cell construction.

In this section, we describe wrappers and agent libraries developed by SRI to facilitate the

construction of agents and planning cells, and MPA’s low-level communication capabilities.

3.1 Agent Construction and Wrappers

MPA provides wrappers and agent libraries that support interagent message passing, multi-

threaded processing, tracing of messages on the screen, and logging of messages in a history.

To allow more complex responses to incoming requests, such as interrupting certain responses

7

to reprioritize the computation, it is possible to combine SRI’s PRS (Procedural Reasoning

System) [17] with the MPA LISP wrapper. PRS is the basis for both our cell manager, plan

server, and meta planning-cell manager. PRS is not a required part of any agent, and agent

interface specifications are independent of PRS.

MPA agents have been implemented in C, C++, LISP, and Java. MPA provides an exten-

sive wrapper for LISP, and some support for C, as described below.

MPA provides an agent wrapper in LISP that supports asynchronous interagent communi-

cation, including functions for making, sending and replying to messages that log and trace

the message exchange. There are also functions for starting and killing agents, and for starting

and stopping tracing. This wrapper can easily be employed by any agent running in LISP.

Other sites have been able to download our wrapper and get an existing LISP program com-

municating as an MPA agent in one day.

MPA provides a library of C functions that can be used to implement a C-language wrapper

for an existing “legacy” agent. This library provides an asynchronous message handler that

invokes the executable image for the legacy agent as requested, and returns the responses. The

handler must be programmed to translate specific messages into suitable invocations of the

legacy agent (e.g., appropriate command line arguments).

MPA makes use of a program named Startit from OAA to initiate, monitor, and terminate

a set of agents. Using Startit greatly facilitates the process of starting and controlling agents.

3.2 How Will Agents Communicate?

Three software packages were considered for providing the low-level communication sub-

strate for invoking procedures over a network:

� Knowledge Query and Manipulation Language (KQML) [4], developed with ARPI sup-
port by Loral and the University of Maryland Baltimore County

� Inter-Language Unification (ILU) [5], developed at Xerox-PARC

� Open Agent Architecture (OAA) [7], developed at SRI International

Currently, MPA is demonstrated on top of KQML, until such time as efficiency or robust-

ness considerations force us to consider another approach. A preliminary implementation of

MPA on top of OAA also exists, and an implementation based on ILU is being developed.

8

KQML is not CORBA-compliant, but has good high-level support for declaring agents

and services and facilitating their use. It has been used fairly extensively (both within and

outside of ARPI). The KQML developers stress their set of high-level performatives with

semantics. While we view the semantics of the given performatives as weak, we believe the

use of standard performatives is the best way to proceed. OAA provides more high-level

agent facilitation than does KQML. We found KQML to be easy to use initially, and have

made several extensions to KQML’s LISP interface to improve its robustness and efficiency.

With these fixes, we have found KQML to be fast enough even for low-level messages (where

a tenth of a second is adequate response), and its high-level facilitation to be useful.

3.3 MPA Messages

MPA provides both a message format and a message-handling protocol to support the sharing

of knowledge among agents involved in cooperative problem solving. The message facility

is built on KQML, which provides a set of high-level performatives, calledcommunication

performativesin MPA. MPA further specifies its own set ofplan performatives, which further

specialize messages to MPA. Combinations of communication and plan performatives define

the message protocols and the operations that agents may attempt to invoke by using other

agents, thus providing a substrate on which to build higher-level models of agent interaction.

MPA messages are built using KQML messages, which are lists composed of a performa-

tive followed by a set of fields specified as keyword and value pairs. Of particular importance

is the :content field, which contains the real content of the message, and can be specified in

any agreed upon language.

MPA uses a communication performative to begin a message. The content field of an

MPA message begins with aplan performative, which is a keyword. Plan performatives are

also included in the content of any replies. The general form of the content field of any MPA

message (sending or reply) is

(:plan-performative {value} {keyword-and-value-pairs})

Throughout this document, bracesfg show optional entities. The first value is the plan per-

formative (a keyword), the second (optional) value is an arbitrary value, followed by optional

fields specified as keyword and value pairs. The allowable values, both for the optional value

and the fields, are dependent on the plan performative being used. The one field that may be

9

used for all plan performatives is :error. When there is an error or unexpected condition, the

replying agent adds an :error field to the message, whose value is generally a string explaining

the problem, suitable for passing on to a user.

4 Plan Servers

MPA can be assigned a planning task for which multiple plans may be developed depending on

context, advice or other factors. For each alternative plan being developed, a cell of agents is

committed to the planning process. The question arises of how to maintain and communicate

the current plan state within a planning cell. Our architecture accomplishes this by having a

plan serveragent in each planning cell, although a single plan server agent can be shared by

multiple planning cells. The plan server is apassiveagent in that it responds to messages sent

by other agents. It does not issue performatives to other agents on its own initiative.

The plan server provides the central repository for plan and plan-related information. A

plan model based on the concepts of task, plan, and action network is described in Sec-

tion 2.2.1. The plan server must be able to represent multiple tasks each with multiple al-

ternative plans. This approach is useful when such alternatives share a lot of structure.

The plan server accepts incoming plan information from agents, performs necessary pro-

cessing, and stores relevant information in its internal representation. This information is then

accessible to any cell agent through queries. The plan server maintains all data structures asso-

ciated with the evolving plan. Because a plan server must be able to stand alone, independent

of the control structure or state of any planning agent, the information it contains must in-

clude not only the partially ordered actions of the plan, but also contexts, backtracking points,

declarative information about the state of the plan (e.g., a list of flaws), and so forth.

An MPA plan server is also responsible for storing relevant information about the task,

plan, and the planning process, and notifying various agents of relevant planning events. These

capabilities are implemented byannotationsand triggers, which are each described in their

own sections.

An MPA plan server embodies the notion of differentviewsof a given plan, a powerful

feature of MPA not found in other architectures. A view constitutes some aspect of the plan

that could be relevant to individual MPA agents. For example, the resource usage in a plan

might be one view of the plan. Certain views are directly retrievable from the plan server

10

(e.g., plain-text and graphical representations), while others must be computed by running

algorithms over the basic plan representation (e.g., resource usage).

Views allow the plan server to provide better service to other agents. These agents can get

information in forms they can use instead of having to include their own software to extract

the desired information from the underlying representation (which can be excessively large).

For example, the resource view of the plan might return a representation of the resources used

without needing to return the entire plan structure from which the requesting agent would have

to extract the resources.

Many other plan-server features are desirable, although not strictly necessary for plan gen-

eration. Our research is not concentrating on such features, which include providing persistent

storage, controlling access to the plan or its parts, providing version control for plans, and de-

veloping graphical browsing capabilities.

In general, a large amount of data is static for a given domain, that is, it remains the same

for each alternative plan. This information need not be stored in each plan server used in this

domain. Instead, a knowledge server will handle requests for static knowledge (perhaps a plan

server forwards such requests).

4.1 Communication and Plan Performatives

The currently allowed combinations of communication and plan performatives in messages

handled by an MPA plan server are shown in Figure 3. Ask-One is the appropriate communi-

cation performative for plan queries when only one answer is desired, while Ask-All is used

when all answers (i.e., a set of answers) are desired.

Annotations and triggers are enough like database objects that the plan server uses the

database communication performatives for manipulating them. Updating and querying a plan

is more complex than adding and deleting something from a database. Therefore, we have a

richer plan performative language for manipulating plans. The performatives described here

are an initial set that will be extended.

4.2 Annotations

Annotations are declarations of high-level attributes of either a plan or the state of the plan-

ning process. Useful annotations for tasks, plans, and action-networks (product annotations)

11

Plan Performative Communication Performatives
:annotation Insert

Delete
Ask-All
Ask-One

:trigger Insert
Delete
Ask-All
Ask-One

:update-task Tell
Delete

:query-task Ask-All
Ask-One

:update-plan Tell
Delete

:query-plan Ask-All
Ask-One

:query-node Ask-All
Ask-One

:ping Evaluate
:pcd Tell

Figure 3: Plan Server Plan and Communication Performatives

include flaws or problems to be repaired, plan quality information, pedigree (how and by

whom parts of the plan were derived), and comparative relationships among alternative plans

and plan fragments. Annotations related to the planning process (process annotations) could

include time spent and the current state of development for a given plan (e.g., :ongoing, :com-

pleted, :failed).

Annotations can be posted to the plan server by any cell agent, including the plan server

itself. Annotations are encoded as predicates and stored in the plan server’s database. Prod-

uct annotations are indexed by task/plan/action-network, thus allowing flexible retrieval (e.g.,

finding all plans or action networks that have a given annotation, or finding all annotations for

a given plan, task or action network).

To distinguish action-network-specific from plan-specific from task-specific from task-

independent annotations, four variants are used as shown in Figure 4. The syntax shown is

used in query messages, but not in the returned answers, which omit the keywords. In Figure 4,

12

(ANNOTATION <basic-annotation>
:task TASK :plan PLAN :action-network A-NETWORK)

(ANNOTATION <basic-annotation> :task TASK :plan PLAN)
(ANNOTATION <basic-annotation> :task TASK))
(ANNOTATION <basic-annotation>)

Figure 4: Variants of Annotations: these variants distinguish action-network-specific from
plan-specific from task-specific from task-independent annotations.

<basic-annotation> corresponds to an arbitrary annotation predicate (which generally

will not specify the plan to which it applies).

4.3 Triggers

A trigger is a form of event-driven rule whose function is to notify specified PAs of a desig-

nated plan server event. An individual trigger is activated by the occurrence of a designated

event. For now, events are limited to the insertion of annotations in the plan server. Activation

of a trigger results in the dispatch of a trigger-dependent message to a designated PA. The

triggered message may simply inform the receiving agents of the triggering event, or request

that some action be taken.

Triggers can be supplied by various sources. Certain of them may be built into the plan

server, while others may be dynamically added and removed during the planning process. For

instance, the cell manager may post triggers at various times to influence the overall planning

process. Individual PAs may post and remove triggers to request notification of particular

events. The operation of triggers are contained within a planning cell.

A trigger specification must include three fields, :event, :destination, and :msg. The :msg

field specifies the message to be sent when a trigger is activated. The recipient of this message

should be specified in the :destination field, and must be anagent role.

This use of annotations and triggers in MPA enables a variety of control modes, and en-

ables the planning process to be controlled dynamically. For example, let’s suppose temporal

conflicts are arising frequently during the planning process, causing backtracking at the end of

every level. The meta-PA with a planning cell can be aware of this by monitoring annotations

posted to the plan server (triggers are useful for this). After noticing the temporal problems,

the meta-PA decides to invoke the temporal reasoning agent after every node expansion, in

order to catch temporal conflicts earlier and reduce backtracking. This change in control can

13

be easily accomplished by the meta-PA inserting a trigger in the plan server that sends the

appropriate message to the temporal reasoning agent whenever a Node-Expanded annotation

is posted.

4.4 Queries

Queries to a plan server can be involved, and particularly complex and commonly used ones

may want to be in their own agents to avoid overloading the plan server. Examples of queries

to a plan server are:
� What are all the unsolved goals?

� What resources are required by this plan?

� Who put this action in the plan?

The query language will be under continuous development as more PAs populate the ar-

chitecture. A key feature of an MPA plan server is the generation of different views of the

plan. The plan performatives and views currently supported for queries in the Act Plan Server

are depicted in Figure 5. The query language could easily be extended — including all of the

above queries is simply a matter of agreeing on a syntax for the query messages.

The :query-plan performative causes a particular view of the plan’s entire action network to

be retrieved from the plan server or computed from data stored in the plan server. For example,

if :view is :resource-constraints, a function walks over the action network and collects the

resource constraints in an interlingua. (The views that mention resources currently use an

interlingua specific to the ACP domain.)

A :query-plan message can apply to either a task, plan, or action network, while :query-

node messages always apply to action networks. The special value :all can be used for any

of those three keywords to find out which tasks, plans, and action networks are known to the

plan server. When :all is used, a list of names is returned, and the :view keyword is ignored.

(:query-plan :task :all)
(:query-plan :task TASK :plan :all)
(:query-plan :task TASK :plan PLAN :action-network :all)

The first query returns a list of all known task names, the second returns a list of all known

plan names for the given task, and the third returns a list of all known action-network names

for the given task and plan. The :query-task performative uses :all similarly for :task and :plan.

14

Plan Performative Views
for tasks:

:query-task :task-network :assumptions
for plans:

:query-plan :task-network :subplans
:ascii :ascii-filename
:monitors :monitor-filename
:parent :available-resources

for action networks:
:query-plan :task-network :resource-constraints

:ascii :ascii-filename
:monitors :monitor-filename
:resource-
allocations

:query-node :predecessors :successors
:unrelated

Figure 5: Plan Performatives and Views for Queries

4.5 Act Plan Server

We have implemented a specific plan server, named the Act Plan Server, which employs the

Act formalism [16] for action representation. An Act is the basic structure used to represent

a plan or action network in the Act formalism. Acts can be expressed either in a format

with embedded graphical information or in plain-text format (to facilitate translation to other

languages). The Act-Editor system [9, 17] supports the graphical creation, manipulation,

browsing and display of Acts, thus serving as a graphical knowledge editor for systems that

use Act.

The Act Plan Server is implemented as a PRSagent. PRSis responsible for maintaining an-

notations, handling and distributing incoming messages, and executing triggers appropriately.

PRS uses knowledge encoded in the Act formalism, MPA’s common plan representation, and

is built on the Act-Editor which can display plans graphically.

Several other architectures, including the AITS, use plan servers. Often such plan servers

are required to provide (among other features) persistence, access control, versioning, and

browsing capabilities. While we view all these features as desirable in an MPA plan server, it

is beyond the scope of MPA to implement a plan server with all of these properties.

15

Rather, we have implemented an Act Plan Server with several features not in other plan

servers. MPA uses these new features (e.g., views, triggers and annotations) to control com-

plex planning processes. The goal of MPA is to develop a new, more powerful architecture,

and our Act Plan Server is a step in that direction. We view it as a straightforward effort to

build the Act Plan Server on top of a plan server or database system that will provide the above

AITS plan server features, although the task may require a significant amount of effort.

The Act Plan Server stores a plan as a series of action networks that together form one

alternative plan for a given task. Action networks are stored as Acts (with links to other action

networks in the same plan), and the only persistence provided is that Acts can be saved to

files in their entirety. Alternative plans can be stored for the same task. No access control or

versioning is provided (other than the ability to store alternative plans for the same task), and

the only browsing capabilities are those provided by SRI’s Act-Editor.

The Act Plan Server supports a reasonably broad set of queries, at the level of tasks, plans,

and action networks. For example, queries can be used to extract the set of known tasks,

the set of plans for a given task, and the set of action networks for a given task or plan.

Annotations and triggers can be queried with a fairly general query language. Seven different

views on plans and action networks, and three different views on individual action-network

nodes (actions) can be obtained through queries. The Act Plan Server could easily support

more queries as needed, including access to individual plan and action-network components.

5 Planning-Cell Managers

A cell manager is a persistent agent that can continuously accept tasks from other agents

(human or software), decompose those tasks into subtasks to be performed by its cell agents,

and then combine the results into solutions.

A planning cell can operate as a stand-alone problem-solving unit. Additionally, sets of

planning cells can be aggregated into larger cells, which are in turn controlled by ameta

planning-cell manager, which distributes and coordinates planning tasks among planning

cells. This manager is given a set of tasks to solve and a set of planning cells as resources,

and is responsible for overseeing the entire planning process. Different management schemes

are appropriate for different applications. We have focused on generating multiple plans in

parallel, using a pair of planning cells controlled by a meta planning-cell manager.

16

Here, we describe implementations of both a baselevel cell manager (the PCM), and a

meta planning-cell manager (the meta-PCM). Their designs serve as templates for additional

types of planning cells. In the long term, MPA will contain a library of such templates which

users can adapt as appropriate for their applications.

We have implemented one particular cell manager, the PCM, with a small number of dif-

ferent planning styles. Instances of PCM are used to control each of several planning cells.

In addition, we have implemented a particular instance of a meta planning-cell manager, the

meta-PCM. These agents are described in more detail in Sections 5.1 and 5.2.

Both the meta-PCM and the PCM are implemented as PRS agents. As with any PRS

agent, each agent includes a database for representing declarative knowledge, a set of Acts

that encode procedural knowledge about how to accomplish goals, and LISP functions that

implement the basic activities for the agent, such as sending an MPA message to another cell

agent. SRI has made the meta-PCM and PCM Acts available to the ARPI community.

PRS provides several capabilities that make it a good framework for constructing such

managers. Because cell managers direct the activities of multiple agents, they must be capa-

ble of smoothly interleaving responses to external requests with internal goal-driven activities.

The uniform processing of goal- and event-directed behavior within PRS is ideal for support-

ing such behavior. PRS supports parallel processing within an agent, thus enabling multiple

lines of activity to be pursued at any given time. The database facility within PRS enables

declarative encodings of key characteristics, making them easy to access and modify. The

Act language, used to represent procedural knowledge within PRS, provides a rich set of goal

modalities for encoding activity, including notions of achievement, maintenance, testing, con-

clusion, and waiting. Finally, the extensive textual and graphical tracing in PRS provides

valuable runtime insights into the operation of cell managers.

5.1 Meta Planning-Cell Manager

The meta-PCM is a persistent agent that can continuously accept planning requests and gener-

ate multiple plans for one or more tasks, given a set of planning cells as resources. Tasks can

be specified by either a human user or another planning agent.

The meta-PCM accepts an asynchronous stream of planning request messages(from mul-

tiple agents), each of which can request that multiple plans be produced. For each requested

plan, the meta-PCM will find a free planning cell if one exists. A planning cell can refuse a

17

Plan Performative Communication Performative
:solution Tell
:failed
:multiple-solve Evaluate
:define-advice
:new-agent
:ping

Figure 6: Meta-PCM Plan and Communication Performatives

task if it is already occupied (our PCM agent will always do so). The meta-PCM distributes

tasks to planning cells by sending messages to the cell manager of each cell. These messages

take the form of planning tasks and advice about how to solve the task. The meta-PCM may

distribute only a subset of the requests if planning cells are busy.

The meta-PCM also responds to any messages from planning cells that describe a solution

or a failure for a planning request. (These are sent by cell managers immediately upon finding

a solution or detecting a failure.) Such responses can be done simultaneously with the handling

of new requests. The plans or failures are “forwarded” to the correct requestor by sending an

MPA message. The meta-PCM also notices when all requests from a given incoming message

have been serviced, and prints a summary of the solutions in its trace window. If desired, it

could also send a summary message to the requestor or invoke a plan comparison agent.

The currently allowed combinations of communication and plan performatives in the mes-

sages handled by the meta-PCM are shown in Figure 6. Multiple-solve messages are the

incoming planning requests. Define-advice messages define new pieces of advice and are for-

warded to all running planning-cell managers. Solution and Failed messages report results

from planning cells. A New-agent message can be used to declare a new planning cell. Sec-

tion 7.1 explains the role of the meta-PCM during our demonstration.

The user can interact directly with the meta-PCM through the PRS interface by posting

appropriate goals and adding or retracting information from the plan server. In addition, an

MPA-specific Meta-PCM menu has been added to the PRS interface to enable simpler inter-

actions with the meta-PCM.

18

Plan Performative Communication Performative
:annotation Tell
:advice
:pcd
:solve Evaluate
:define-advice
:ping

Figure 7: PCM Plan and Communication Performatives

5.2 Overview of the PCM

The PCM is a persistent agent that can continuously solve planning tasks. Tasks can be spec-

ified by either a human user or another planning agent, such as the meta-PCM. Planning

requests are serviced sequentially rather than concurrently; thus, the PCM can solve multiple

tasks but only one at any given time. If the PCM gets a request to generate a plan while it is

already busy, it replies with a message indicating that it is busy. Concurrent plan generation is

accomplished by the meta-PCM, which can invoke multiple PCM agents controlling multiple

planning cells.

A cell manager is responsible for overseeing the entire planning process for a given task.

One key responsibility is the management of the PCD. The agents with assigned roles in the

PCD are referred to as thecell agents. In addition, the cell manager must determine the

appropriate problem-solving strategy to apply to a given task, and manage the distribution of

subtasks to agents within the cell. Finally, the cell manager must coordinate all results and

activities of the cell agents.

Section 7.1 describes the different strategies used by the PCM for monitoring and con-

trolling the planning process during our initial demonstration. The PCM reconfigured the

planning cell during planning and demonstrated dynamic strategy adaptation.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the PCM are shown in Figure 7. Annotation messages advise the PCM

of annotations that have been posted in the plan server. Such messages are sent by triggers

posted by the PCM itself. Advice messages select (predefined) problem-solving advice [8] to

be used by plan generation agents within the cell; the PCM will pass along specified advice to

appropriate agents when making planning requests. Define-advice messages are forwarded to

appropriate cell agents when new advice is being defined. Solve messages request the PCM

19

PCD Role Agent Names
:manager pcm
:plan-server plan-server
:planner sipe
:search-manager
:critic-manager
:scheduler opis
:temporal-reasoneropis, tachyon
:executor executor
:requestor meta-pcm

Figure 8: Plan Cell Descriptor Roles and Their Possible Fillers

to generate a plan, and Ping and PCD messages are handled by all agents.

5.3 Planning Cell Characteristics

The PCM’s planning cell is characterized by two key elements: the PCD, and theplan styleto

be used for problem solving.

The roles in the current PCM and their possible agent fillers are listed in Figure 8. Each

role is filled by zero, one, or a set of agents, depending on the nature of the problem-solving

process. Because of the KQML restriction of one agent per image (and in some cases for

efficiency), the “sipe” KQML agent services messages for several pseudoagents in the initial

demonstration. These pseudoagents include the Search Manager, Critic Manager, Schedule

Critic, and Temporal Critic.

Planning may commence either in response to a request by another agent, the meta-PCM

in our demo, or directly from the user. When planning commences, the PCM first determines

whether the cell agents are alive and ready to receive messages. After verifying the readiness

of the cell agents, the PCM distributes a copy of the PCD to each. Each cell agent consults

its local copy of the PCD to ascertain where to send intracell messages. The PCD can be

reconfigured dynamically during the planning process. When such reconfigurations occur,

updated versions of the PCD are sent to all cell agents.

The PCM supports a small number of planning styles, all of which assume a level-by-

level plan generation model, derived from the hierarchical task network (HTN) approach to

planning [3]. For each level, a more refined plan is first generated, then critiqued. This model

20

may not apply to all planners, but is reasonably general. In particular, nothing is assumed

about what comprises a level, thus enabling a range of different level refinement methods (for

example, expansion of a single goal or all goals).

A planner can expand a plan to some arbitrary extent, as appropriate to its planning tech-

nology. All that is required is that the plan critics can be applied after each such expansion.

If critic roles are left unfilled, critiquing is skipped. In addition to HTN planners, causal-link

planners [12] fit naturally into this scheme, with goal selection, operator selection, and subgoal

generation viewed as forms of plan expansion. Causal link protection and checking constraint

consistency correspond to plan critiquing.

The PCM planning styles vary in their choice of agent to perform the plan refinement,

the selection of critic agents for the critique phase, and the frequency of critic invocation.

Currently, the PCM supports two plan styles: one where the Planner is responsible for cri-

tiques, and one where the PCM is responsible. The PCM takes different actions based on the

information returned by the Planner about the status of the expansion process.

The PCM-controlled critique phase involves the application of all critics that are currently

declaredfor the Plan Cell. Each declaration defines a critic performative and the cell role that

is responsible for managing the corresponding critic. A critic performative is simply a plan

performative that is handled by an agent that is considered to be a plan critic. The PCM sends

a message to invoke each declared critic.

5.4 PCM Invocation

The user can invoke the PCM through the PRS interface by posting appropriate goals and

adding or retracting facts from the PCM’s database. This is made possible by the declarative

approach used to encode relevant PCM characteristics. In addition, an MPA-specific Plan-Cell

menu has been added to the PRS interface for interactive control of the PCM.

Alternatively the operation of the PCM can be controlled by another agent. We have

implemented a meta-PCM agent which can coordinate the operation of multiple planning

cells to produce multiple plans simultaneously. The meta-PCM, described in Section 5.1,

distributes tasks to planning cells by sending messages to the cell manager of each cell, and

handles messages about completed or failed plans.

21

6 Integrating Planning, Scheduling and Execution

The previous sections described agents that were written specifically for MPA, the meta-PCM,

the PCM, and the Act Plan Server. Here we describe the modularization of legacy software

systems into MPA agents. We first describe the use of executor and plan manager agents for

continuous planning and execution, and then the use of an existing planner and an existing

scheduler in MPA.

6.1 Continuous Planning and Execution

If plans are to be executed in dynamic environments, there must be agents able to deal with

unpredictable changes in the world. As such, agents must be able to react to unanticipated

events by taking appropriate actions in a timely manner, while continuing activities that sup-

port current goals. Agents must have the ability to recover from failures by adapting their

activities to the new situation, and/or repairing the plan. We will refer to an agent with these

capabilites as anexecutoragent, because the MPA protocols described here support the role of

an agent executing a plan and doing plan repair. (As described below, the executor capabilites

are only some of the many desireable functionalities.)

Two different demonstrations show the use of MPA for continuous plan repair. The first

demonstration is a distributed, multiagent version of SRI’s Cypress system in the domain of

joint military operations planning [15]. The second demonstration is a distributed, multiagent

version of SRI’s CPEF system (Continuous Planning and Execution Framework),3 in the do-

main of air campaign planning (using an extended version of the TIE 97-1 planning knowledge

base, but a different scenario).

The executor is always active, constantly monitoring the world for goals to be achieved or

events that require immediate action. In accord with its current beliefs and goals, the executor

takes actions in response to these goals and events. Appropriate responses include applying

standard operating procedures, invoking the planner to produce a new plan for achieving a

goal, or requesting that the planner modify the plan being executed. The planner plans only

to a certain level of detail, with the executor taking that plan and expanding it at run time by

applying appropriate library actions at lower levels of abstraction.

3CPEF development was supported by DARPA Contract No. F30602-97-C-0067 as part of the JFACC pro-
gram.

22

Plan Performative Communication Performative
:install Evaluate
:execute
:ping
:pcd Tell
:solution
:failed

Figure 9: Executor Plan and Communication Performatives

CPEF significantly extends the ability of Cypress to support the continuous development,

monitoring, and adaptation of plans. CPEF has a Plan Manager agent that controls the overall

life cycle of a plan, spanning plan generation, plan repairs, and plan execution. Thus, the Plan

Manager performs the duties of the executor agent mentioned above, among other things. The

executor agent could be a separate agent that is invoked by the Plan Manager. The creation

and management ofmonitorsis crucial to plan management. CPEF defines a monitor to be

an event-response rule for which detection of the specified event leads to execution of the

corresponding response. The MPA protocols support the planner automatically generating

monitors appropriate to a specific plan, and sending these monitors to the Plan Manager.

6.1.1 Executor Agent

The MPA protocols described here support the role of an agent executing a plan, possibly do-

ing plan repair. This is one of the many functionalities that a plan manager might provide (e.g.,

a plan manager might control planning agents in a manner similar to the PCM.) The currently

allowed combinations of communication and plan performatives in messages handled by the

executor are shown in Figure 9.

An Install message tells the executor to retrieve the plan from the plan server and get it

ready for possible execution. Installation may involve creating and/or installing monitors. An

Execute message tells the executor to being plan execution. Solution and Failed messages will

be received after Revise or Solve requests are sent to the planner. The executor may also send

Create-monitors requests to the planner.

23

6.2 Planning and Scheduling

One objective of the MPA project is to decompose and integrate planning and scheduling

capabilities within the MPA architecture. Work on integrating planning and scheduling has

proceeded via an SRI subcontract with CMU under the direction of Dr. Steve Smith, aimed

specifically at adapting and integrating scheduling functionality contained in CMU’s OPIS

scheduler [11].4

One of the primary shortcomings of IFD-4 is the inability of the planner to do a capacity

analysis early in the planning process. For example, when there are 75 F-16s and the plan

requires 83 F-16s, the “capacity” of our F-16 assets is inadequate. Part of the MPA decom-

position of the CMU scheduler includes a Scheduler agent for capacity analysis. We have

implemented such an agent and developed its constraint and capacity models. Once we con-

verged on definitions of resource capacity and relevant resource utilization constraints, we

were able to adapt CMU’s capacity analysis knowledge source straightforwardly. We believe

that our demonstration showed significant value added to IFD-4 stemming from the resource

utilization provided by CMU’s scheduler.

6.2.1 Planner Agents: Search Manager and Critic Manager

Currently, the specification for the planner agent assumes a level-by-level plan generation pro-

cess with a critique of the plan after each expansion, as described in Section 5.3. The planner

can expand the plan at each level to some arbitrary extent, as appropriate to the planning tech-

nology being used. The critique can post annotations to the plan server and can cause a failure

of the planning process if unresolvable conflicts are found. The expansion phase is accom-

plished by the Search Manager agent, while the critique of the plan is accomplished by the

Critic Manager agent. Currently, these two agents are pseudoagents within a single planner

agent, although we expect future planning cells will have them as separate agents.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the Search Manager are shown in Figure 10. The first group of Evaluate

messages are used to generate or modify plans. An Init-problem message translates a given

task to the planner’s representation, and initializes the planner for planning (:start-problem is

a synonym for :init-problem). An Expand-plan message causes the plan to be expanded to

the next level, while an Expand-plan-and-critique message causes the plan to be expanded and

4Steve Smith and Marcel Becker contributed to this section.

24

Plan Performative Communication Performative
:init-problem Evaluate
:expand-plan
:expand-plan-and-critique
:generate-plan
:revise
:define-advice Evaluate
:draw-plan
:create-monitors
:reset-problems
:reset-domain
:ping
:pcd Tell
:advice
:query-advice Ask-All

Figure 10: Search Manager Plan and Communication Performatives

also calls the plan critics on the plan. A Generate-plan message causes all levels of a plan to be

generated for a given task (using the planner as the only plan-generation agent and bypassing

PCM control). A Revise message causes an existing plan to be modified as required by a set

of new facts given in the message.

The second group of Evaluate messages provide support functions, such as drawing plans,

and updating and querying information. Define-advice messages specify new advice defi-

nitions. A Draw-plan message causes the given plan to be drawn in the planner’s GUI. A

Create-monitors message will create a set of monitors for the given plan (see Section 6.1).

The Advice message tell the planner to activate and/or deactivate already defined pieces of

advice, and the Query-advice message asks the planner to return the names and descriptions

of defined and/or active advice.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the Critic Manager are shown in Figure 11. A Plan-ok? message causes the

planner to apply all critics known to it. A Schedule-ok? message causes the agent to invoke

the scheduler agent of the planning cell. A Temporal-ok? message causes the agent to invoke

the temporal-reasoner agent of the planning cell. A Schedule-ctem? message is specific to

the ACP planning domain and causes the planner to translate the current plan to CTEM, run

CTEM, and translate the results back. The Ping and PCD messages are handled by all agents.

25

Plan Performative Communication Performative
:plan-ok? Evaluate
:schedule-ok?
:temporal-ok?
:schedule-ctem?
:ping
:pcd Tell

Figure 11: Critic Manager Plan and Communication Performatives

The domain-independent SIPE–2 planning system [13, 14] and the Advisable Planner [8]

have been used as the basis for the planner agents in all our demonstrations. SIPE–2 has a

precise notion of a planning level, and plan critics that fit naturally into the above scheme. To

serve as an MPA planner agent, SIPE–2 had to be modularized, separating out its search con-

trol algorithm into the Search Manager pseudoagent, its plan critics algorithm into the Critic

Manager pseudoagent, and its temporal reasoning critic into the Temporal Critic pseudoagent,

which was extended to use any temporal reasoner in the planning cell. In addition, a new

critic was created using the scheduler agent to do capacity analysis and resource allocation.

The Schedule Critic pseudoagent was written to interact with whatever scheduler agent is in

the planning cell.

6.2.2 Scheduler Agent

The use of the scheduler in our current implementation is tied closely to the ACP domain.

This domain has been modeled within OPIS to produce a scheduling agent for the planning

cell. This agent currently provides two types of service to support the planning process:

� Capacity analysis - this service provides a profile of the resource demand for airframe

capacity of different types at various air bases over time, and identifies those periods

where the “availability level” of allocated resources indicates that available assets are

oversubscribed.

� Resource allocation - this service commits specific assets (i.e., airframe capacity of a

particular type from a particular airbase) to specific missions and hence declares these

resources unavailable for any subsequent missions that might be planned.

26

Plan Performative Communication Performative
:available-resources Ask-all
:resource-constraints
:allocate-resources Evaluate
:ping
:pcd Tell
:solution

Figure 12: Scheduler Plan and Communication Performatives

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the scheduler are shown in Figure 12. Available-resources and Resource-

constraints messages are simply “forwarded” on to the plan server using the appropriate view

of the given plan, and the plan server’s answer is returned. The primary invocation of the

scheduler is done with an Allocate-resources message which causes the scheduler to analyze

capacity and allocate resources.

7 Single Planning Cell Configuration

We use the termconfigurationto refer to a particular organization of MPA agents and problem-

solving strategies. Here, we describe a single-cell MPA configuration for generating individual

solutions to a planning task, and the next section describes multiple-cell configurations for

generating alternative solutions in parallel.

The initial demonstration was given in September 1996, using the configuration depicted

in Figure 13. The demonstration showed a multiagent planner and scheduler, together with a

temporal reasoning agent, accomplishing planning/scheduling in the Air Campaign Planning

domain. To demonstrate the capabilities of MPA, we showed multiple asynchronous agents

cooperatively generating a plan, the cell manager reconfiguring the planning cell during plan-

ning, agents implemented in different programming languages, and agents running on dif-

ferent machines both locally and over the Internet. The June 1997 demonstration, described

in Section 8, includes multiple instances of the planning cell from the 1996 demonstration,

coordinated by a meta planning-cell manager, producing multiple alternative plans in parallel.

The PCM is a meta-PA that controls the entire process, including initialization of the

planning cell, and specification of a Planning-Cell Descriptor. Planning agents include

27

Plan Complete

Plan ok?

PA
Scheduler
(OPIS)

PA
Temporal Reasoner
(OPIS)

PA
Temporal Reasoner
(Tachyon)

or

PA
Search Manager
one-level
(SIPE-2)

PA
Schedule Critic
(new)

 PA
Temporal Constraint Critic
(SIPE-2)

Request
Expand
Next
Level

Meta-PA
Planning-Cell Manager
(PRS)

Planning Cell Designator

Cue:
 (TEST (ready unit1))ACT2

Cue:
Plan One-Level

ACT1Create a plan
Agent

KQML

Message

Annotations

Triggers

Plan Server

Cue: (TEST (ready unit1))ACT2
Cue:
Answer query

ACT1

meta-PA
Critic Manager
(SIPE-2)

Figure 13: MPA Single Cell Configuration. Arrows represent message traffic, except that all
agents communicate with the (Act) Plan Server so those arrows are omitted. The lines without
arrowheads show planning cell composition, and the shaded boxes were not implemented.
Agents insides dashed boxes were implemented within the same image.

GUI/Advice-Manager (not implemented until TIE 97-1), Act Plan Server, Search Manager,

Critic Manager, Schedule Critic, Temporal Critic, Scheduler, and Temporal Reasoner (pro-

vided by OPIS, Tachyon, or both).

The PCM and the Act Plan Server are implemented in PRS, which allows complex real-

time control of the processing of messages. Eventually, the Critic Manager may also be a PRS-

based meta-PA that controls agents for individual critics. Currently, SIPE–2’s critic manager

is the basis for the Critic Manager, although it has been modified to send messages to temporal

reasoning and scheduling agents. The Tachyon agent is in C and employs a C wrapper, while

the other agents have LISP wrappers.

All agents send messages to and from the Act Plan Server, so arrows for these messages

are omitted. The Act Plan Server supports annotations and triggers which are used to record

features of the plan and notify agents of the posting of those features. The plan is written to the

plan server in the Act formalism, which can be understood by the scheduler and the planner.

The Act Plan Server answers queries about the plan, and handles the annotations and triggers.

28

The Search Manager is based on SIPE–2’s interactive search routine, which has been ex-

tended to record its backtracking points and other information in the plan server. Another

extension permits starting the search at various backtracking points.

7.1 Control of the Planning Process

The demonstration involves strategy-to-task planning in which the PCM controls the interac-

tion among the various components. The demonstration proceeds through the three phases de-

scribed here. Because of the specialized nature of the task, a special Act (Multiphase Planning

with CTEM) is included in the procedural knowledge base of the PCM to enable generation of

plans that require CTEM invocation.5

Phase I: Targeting Plans The first phase produces the initial targeting plans for achiev-

ing air superiority. For this phase, no scheduler capabilities are used, as there is nothing to

schedule in this phase.

Phase II: CTEM Analysis The second phase consists of CTEM scheduling the Phase I

plan. This request is made by sending a :schedule-ctem performative to the cell’s Planner.

Phase III: Support Plan In the final phase, the support missions required for the CTEM-

generated schedule are generated by a second planning process. This portion of the task

requires scheduling, so the PCM modifies the PCD to include “opis” in the role of scheduler

and redistributes the new PCD to all cell agents.

7.2 Demonstration Scenario

The demonstration generates a two-day plan to achieve air superiority over two unnamed coun-

tries. We extended IFD-4 by adding some Intelligence Surveillance Reconnaissance (ISR)

operators with temporal constraints (the ISR must be sometimes be done several days before

other actions). The PCM invokes the Temporal Reasoner to check these constraints.

The demonstration develops a plan in which fuel tankers are overutilized. When the Sched-

ule Critic notices the Resources-Overutilized annotation posted by the Scheduler for specific

5CTEM is a force requirements estimator and scheduler developed at AEM Services.

29

tankers, it inserts a Resource-Class-Overutilized annotation for the class of tankers. The PCM

has posted a trigger on such an annotation and is immediately notified. It responds with two

different tactics to produce a better plan:

1. The PCM sends an :advice plan performative to the Planner, which causes the Planner
to choose options requiring less fuel for the remainder of the plan expansion. This
capability employs SRI’s Advisable Planner. The plan will still have flaws because
resources were already overutilized before the PCM issued the advice.

2. The PCM (after either finishing tactic (1) or aborting the planning process) invokes a
second search for another plan, this time using advice from the start. This produces a
fuel-economic plan in which tankers are not overutilized.

This scenario shows the flexibility provided by the MPA. Separate software systems (OPIS,

Tachyon, and SIPE–2, using KQML and PRSfor support), cooperatively generate a plan. They

are distributed on different machines, implemented in different programming languages, and

combined in multiple ways because of the flexible architecture. The Act Plan Server allows

flexible communication of the plan among agents. The PCM encodes different strategies

for monitoring and controlling the planning process, thus demonstrating dynamic strategy

adaptation in response to partial results.

8 Multiple Planning Cell Demonstrations

In June 1997, we demonstrated a configuration with two planning cells producing alternative

plans for the same task in parallel. The TIE 97-1 demonstration built on this configuration,

but used a new and more extensive knowledge base of planning operators and advice, and

integrated additional agents.

The meta-PCM controls the entire process, including initialization of planning cells, dis-

tribution of tasks and advice, and reporting of solutions. The planning cells operate exactly as

described for the single planning cell demonstration (Section 7), except that they are invoked

by the meta-PCM instead of the user, and they refuse requests if they are already busy.

8.1 June 1997 Demonstration

This demonstration followed the same sequence as that for the single planning cell demon-

stration, except two alternate plans are constructed in parallel. Figure 14 depicts a multicell

30

Visualization/Comparison

Agent
KQML

Message

Annotations

Triggers

Plan Server

Cue: (TEST (ready unit1))ACT2
Cue:
Answer query

ACT1

Scheduler

Planning Cell Planning Cell

Meta Planning-Cell Manager

task solved task solved

request
solution
to task

request
solution
to task

Shared Agents

Search
Manager

Critic
Manager

Planning-Cell
Manager

Create a plan

Plan Complete

 Simulator

Temporal Reasoner

Shared Agents

Search
Manager

Critic
Manager

Planning-Cell
Manager

GUI/Advice Manager

Figure 14: MPA Configuration for Multiple Planning Cells. Arrows represent cell-manager
message traffic. The lines without arrowheads show planning cell composition.

configuration similar to the one used in this demonstration (not all of the shared agents shown

were used). Because the planning cells are given different advice initially, the two plans are

different. The planning cells shared the same Act Plan Server, Temporal Reasoner and Sched-

uler agents. Sharing agents requires fewer running jobs, but is not a requirement.

This time two different plans are generated. One planning cell is given the ad-

vice :economical-defense by the meta-PCM and the other is given the advice

:F-14D-intercept . (This advice could have been selected by a human user.) The lat-

ter plan is a “gas-guzzling” plan that overutilized tankers, but the former plan is economical

in its use of resources, and does not overutilize tankers.

31

8.2 TIE 97-1 Demonstration

The TIE 97-1 demonstration, first shown in November 1997, built directly on the multiple

planning-cell demonstration just described. Significant extensions include the use of a new

and more extensive knowledge base, and the integration of additional agents for plan evalua-

tion, user interaction and plan visualization. Figure 14 depicts the configuration used in this

demonstration.

Several new MPA agents were created. The ARPI Plan Authoring Tool (APAT) from ISX,

a legacy system written in Java, was integrated as an MPA agent. It fills two roles, the first

being the role of GUI/Advice Manager depicted in Figure 14, and the second being the role

of plan visualization (a service also provided in the demonstration by the Visage system from

MAYA). Another new agent was the Air Campaign Simulator (ACS) [1] from the University

of Massachusetts, written in LISP, whose role was to run Monte Carlo simulations of plans,

and feed the resulting data to the VISAGE system from MAYA for plan visualization and

evaluation. Both of these agents can read Acts from the Act Plan Server and translate them to

their internal representation.

It took the University of Massachusetts only a day to download MPA and have ACS send-

ing and receiving MPA messages. A few more days were needed for translating from the Act

representation into the ACS representation. (This translation is easy because ACS can ignore

much of the information in an Act.)

This experience indicates that MPA does indeed facilitate the integration of new technolo-

gies. To have a technology like ACS be invoked by APAT and retrieve the plan from the agents

producing it took much longer in IFD-4 (before MPA).

8.2.1 ACP Knowledge Base

We built a new knowledge base (ACP KB) for the air campaign planning domain. The ACP

KB is intended to support air superiority planning, both offensive and defensive, down to ac-

tivity and support mission level. The ACP KB now models target networks. Each network

provides a capability and requires capabilities from other networks in order to function. Net-

work effectiveness is modeled quantitatively, allowing incremental degradation.

The network/capability model is used primarily to model threats to air superiority, though

the model is rich enough to model production networks, lines of communication, and other

32

networks of targets. The new KB allows more sophisticated and realistic effects-based plan-

ning than was done in IFD-4. For example, it keeps track of target networks (not present in

IFD-4) and calculates degradation of the network as targets are attacked. The ACP KB adds

more realism and provides a more substantive integration with the simulator, the Advisable

Planner, and plan critique and evaluation modules than the old knowledge base.

8.2.2 Demonstration Flow

The user interacts with APAT, specifying part of the plan and selecting advice to control the

automatic generation of the air superiority plan. As of September 1998, the user can easily

create new advice using the Mastermind tool6 to generate legal advice definitions which are

then sent to all appropriate agents.

The APAT-authored plan is written as an Act to the plan server. When requested by a

human using APAT’s GUI, APAT sends a message to the meta-PCM with the user-selected

advice requesting a plan to be generated. The meta-PCM invokes a planning cell on the

request, using all the agents of our earlier demonstrations except the temporal reasoner. This

planning process uses both the MPA-generated plan and the APAT-authored plan as input to

CTEM, and then generates a support plan for the CTEM output.

When the post-CTEM plan is finished, APAT retrieves the plan by sending a message to

the plan server, and translates it to APAT’s internal representation. The user can use APAT’s

GUI to inspect the plan. Interacting with APAT, the user elects to simulate the plan, and a

message is sent to invoke ACS on the generated plan. ACS retrieves the plan by sending

a message to the plan server, and generates data by simulating the plan. VISAGE is then

invoked to visualize the results of the simulation.

The user does not like certain aspects of the plan, so decides to generate two different

alternatives, and selects two sets of advice in APAT. A message is sent to the meta-PCM

requesting two plans. Two planning cells are invoked in parallel and two plans are generated.

Again, simulation is invoked, and this time VISAGE can display graphs and charts comparing

all three plans along various dimensions.

6from Information Sciences Institute (ISI).

33

9 Future Work

Promising directions for extending this work are numerous. They include the following:

� Experimenting with additional configurations and cooperative problem-solving meth-
ods.

� Broadcasting messages to fill planning cells with agents.

� Defining a broader range of cell-manager control strategies and planning styles.

� Incorporating additional technologies as new agents.

� Extending the plan server (possible extensions include the plan representation, access
control to the plan, version control, and graphical browsing capabilities).

10 Summary

MPA is an open planning architecture that facilitates incorporation of new technologies and

allows the planning system to capitalize on the benefits of distributed computing for efficiency

and robustness. MPA provides protocols to support the sharing of knowledge and capabili-

ties among agents involved in cooperative problem-solving. Within MPA, software modules

written in different programming languages can easily interoperate.

MPA configurations show the flexibility provided by MPA. Separate software systems

(OPIS, Tachyon, ACS, APAT, the Advisable Planner, and SIPE–2, using KQML, the Act-

Editor, and PRS for support) cooperatively generate and evaluate plans, generating multiple,

alternative plans in parallel. These systems are combined in multiple ways through the flexible

architecture.

The MPA framework has been used to integrate several sophisticated stand-alone systems

cooperating on a large-scale problem. The MPA configuration generated and evaluated com-

plex plans (containing more than 4000 nodes) in the ACP domain, and included agents written

in C, C++, LISP, and Java. MPA was used as the infrastructure for ARPI’s TIE 97-1.

The Act Plan Server allows flexible communication of the plan among agents through the

use of annotations, triggers, and views. The PCM encodes different strategies for controlling

the planning process, demonstrating dynamic strategy adaptation in response to partial results.

The planner and scheduler use legacy systems to provide a new integration of planning and

scheduling technologies.

34

Other sites have been able to download the MPA wrapper and get an existing LISP program

communicating as an MPA agent in one day. Our experience indicates that MPA does indeed

facilitate the integration of new technologies, thus encouraging experimentation with and use

of new technologies.

Acknowledgments

This research was supported by Contract F30602-95-C-0235 with the Defense Advanced Re-
search Projects Agency, under the supervision of Air Force Research Lab – Rome. Tom Lee
made significant contributions, and was responsible for the ACP KB.

References

[1] Paul Cohen, Scott Anderson, and David Westbrook. Simulation for ARPI and the Air
Campaign Simulator. In A. Tate, editor,Advanced Planning Technology: Technological
Achievements of the ARPA/Rome Laboratory Planning Initiative, pages 113–118, AAAI
Press, Menlo Park, CA, 1996.

[2] E. H. Durfee, M. J. Huber, M. Kurnow, and J. Lee. Taipe: Tactical assistants for interac-
tion planning and execution. InProceedings of Autonomous Agents ’97, 1997.

[3] Kutluhan Erol, James Hendler, and Dana S. Nau. Semantics for hierarchical task-
network planning. Technical Report CS-TR-3239, Computer Science Department, Uni-
versity of Maryland, 1994.

[4] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, and
J. McGuire. Specification of the KQML Agent-Communication Language. Technical
Report EIT T R92-04, Enterprise Integration Technologies, Palo Alto, CA, 1992.

[5] Bill Janssen, Mike Spreitzer, Dan Larner, and Chris Jacobi. ILU 2.0 reference manual.
Technical report, Xerox PARC, December 1997.

[6] P.D. Karp, J.D. Lowrance, T.M. Strat, and D.E. Wilkins. The Grasper-CL graph man-
agement system.LISP and Symbolic Computation, 7:245–282, 1994.

[7] Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, David L. Martin, and Sangkyu Park.
Multimodal user interfaces in the Open Agent Architecture. InProc. of the 1997 Interna-
tional Conference on Intelligent User Interfaces (IUI97), Orlando, Florida, 6-9 January
1997.

35

[8] Karen L. Myers. Strategic advice for hierarchical planners. In L. C. Aiello, J. Doyle,
and S. C. Shapiro, editors,Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fifth International Conference (KR ’96). Morgan Kaufmann Publishers,
1996.

[9] Karen L. Myers and David E. Wilkins.The Act-Editor User’s Guide: A Manual for Ver-
sion 2.2. Artificial Intelligence Center, SRI International, Menlo Park, CA, September
1997.

[10] Karen L. Myers and David E. Wilkins.The Act Formalism. Artificial Intelligence Center,
SRI International, Menlo Park, CA, version 2.2 edition, September 1997.

[11] Stephen Smith. Opis: A methodology and architecture for reactive scheduling. In M. Fox
and M. Zweben, editors,Intelligent Scheduling. Morgan Kaufmann Publishers Inc., San
Mateo, CA, 1994.

[12] D. S. Weld. An introduction to least committment planning.AI Magazine, 15(4):27–61,
1994.

[13] David E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

[14] David E. Wilkins. Can AI planners solve practical problems?Computational Intelli-
gence, 6(4):232–246, 1990.

[15] David E. Wilkins and Roberto V. Desimone. Applying an AI planner to military op-
erations planning. In M. Fox and M. Zweben, editors,Intelligent Scheduling, pages
685–709. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1994.

[16] David E. Wilkins and Karen L. Myers. A common knowledge representation for plan
generation and reactive execution.Journal of Logic and Computation, 5(6):731–761,
December 1995.

[17] David E. Wilkins, Karen L. Myers, John D. Lowrance, and Leonard P. Wesley. Plan-
ning and reacting in uncertain and dynamic environments.Journal of Experimental and
Theoretical AI, 7(1):197–227, 1995.

36

