
Working Document:
Revisions as of October 9, 1998

Multiagent Planning Architecture
MPA Version 1.7

SRI Project 7150
Contract No. F30602-95-C-0235

By: David E. Wilkins, Senior Computer Scientist
Karen L. Myers, Senior Computer Scientist
Marie desJardins, Computer Scientist
Pauline M. Berry, Computer Scientist
SRI International

Contents

1 Introduction 1

2 The Multiagent Planning Architecture 2

2.1 What Is an agent? . 3

2.2 Planning Cells . 5

2.3 Common Plan Representation . 7

2.3.1 Plan Model . 8

2.3.2 ASCII Acts . 9

3 MPA Infrastructure 9

3.1 Agent Construction and Wrappers . 9

3.1.1 LISP Wrapper . 10

3.1.2 C Wrapper and Agent Library . 10

3.2 Managing Agents . 11

3.3 How Will Agents Communicate? . 11

3.4 KQML . 12

3.5 MPA Messages . 12

3.5.1 Detailed Syntax of Messages . 12

3.5.2 Wrapper Functions for Messages . 14

3.5.3 Pseudoagents . 14

3.5.4 Reporting Errors . 15

4 Plan Servers 16

4.1 Communication and Plan Performatives . 18

4.2 Annotations . 19

4.3 Triggers . 20

4.4 Queries . 21

4.5 Act Plan Server . 23

4.5.1 Limitations of the Act Plan Server 24

4.5.2 Act Plan Server Interactions . 25

4.5.3 Use of the Act Plan Server in TIEs 25

4.6 Future Issues for the Plan Server . 26

i

5 Planning-Cell Managers 27

5.1 Meta Planning-Cell Manager . 28

5.2 Overview of the PCM . 30

5.3 Planning Cell Characteristics . 31

5.3.1 Planning Styles . 32

5.3.2 Database . 34

5.4 PCM Invocation . 34

5.5 Use of The PCM in TIEs . 35

6 Integrating Planning, Scheduling and Execution 35

6.1 Continuous Planning and Execution . 35

6.1.1 Executor Agent . 37

6.2 Planning and Scheduling . 37

6.2.1 Planner Agents: Search Manager and Critic Manager 38

6.2.2 Scheduler Agent . 40

6.2.3 Planner-Scheduler Interaction in the Demonstration 42

7 Single Planning Cell Configuration 44

7.1 Control of the Planning Process . 46

7.2 Demonstration Scenario . 46

7.3 Demo Visuals . 47

7.4 Message Traffic for Planning and Scheduling 48

8 Multiple Planning Cell Demonstrations 52

8.1 June 1997 Demonstration . 52

8.2 TIE 97-1 Demonstration . 53

8.2.1 ACP Knowledge Base . 54

8.2.2 Demonstration Flow . 54

9 Agent Interface Specifications 55

9.1 Meta Planning-Cell Manager Messages . 56

9.2 Planning-Cell Manager Messages . 59

9.3 Planner Messages: Search Manager . 61

9.3.1 Invoking Planning on a Task . 61

9.3.2 Customizations . 62

ii

9.3.3 Plan Expansion and Critique . 64

9.3.4 Plan Repair . 67

9.3.5 Advice . 69

9.3.6 Miscellaneous . 70

9.4 Planner Messages: Critic Manager . 70

9.5 Schedule Critic Messages . 71

9.6 Temporal Critic Messages . 71

9.7 Executor Messages . 72

9.8 Plan Server Messages . 74

9.8.1 Task Updates . 75

9.8.2 Plan Updates . 76

9.8.3 Deletions . 78

9.8.4 Task Queries . 78

9.8.5 Plan Queries . 80

9.9 Annotations . 84

9.10 Triggers . 86

10 Other Agents 88

10.1 Sort Hierarchy Agent . 88

10.2 Temporal Critic and Tachyon Server . 89

11 Future Work 90

12 Summary 90

A LISP Wrapper 94

A.1 Global Variables . 95

A.2 Functions for Agents . 97

A.3 Functions for Messages . 97

A.4 Functions for Tracing and Logging . 99

A.5 Miscellaneous Functions and Examples . 100

B C Wrapper and Agent Library Documentation 101

iii

1 Introduction

The Multiagent Planning Architecture (MPA) is a framework for integrating diverse technolo-

gies into a system capable of solving complex planning problems. MPA has been designed

for application to planning problems that cannot be solved by individual systems, but rather

require the coordinated efforts of a diverse set of technologies and human experts. Software

agents within MPA are expected to be sophisticated problem-solving systems in their own

right, and may span a range of programming languages. MPA’s open design facilitates rapid

incorporation of tools and capabilities, which in turn encourages experimentation with new

technologies.

MPA provides protocols to support the sharing of knowledge and capabilities among

agents involved in cooperative planning and problem solving. MPA allows planning systems

to capitalize on the benefits of distributed computing architectures for efficiency and robust-

ness. For example, MPA is capable of generating multiple, alternative plans in parallel.

Agents within MPA share well-defined, uniform interface specifications, so that we can

explore ways of reconfiguring, reimplementing, and adding new capabilities to the planning

system. This paper describes at least two areas in which such exploration was undertaken. The

first is exploring alternative strategies for integrating planning and scheduling. We decom-

pose a DARPA/Rome Laboratory Planning Initiative (ARPI) planning system and an ARPI

scheduling system into component modules, where each component becomes its own plan-

ning agent (PA). This decomposition allows these ARPI technologies to be more tightly and

flexibly integrated.

A second area of exploration is the definition of organizational units for agents that permit

flexible control policies in generating plans. Within MPA, notions ofbaselevel planning cells

andmetalevel planning cellshave been defined, where the baselevel cells provide sequential

solution generation and the metalevel cells employ baselevel cells to support parallel genera-

tion of qualitatively different solutions. Metalevel cells provide the ability to rapidly explore

the space of solutions to a given planning problem. Meta-PAs (PAs that control other PAs) de-

fine different control strategies among the PAs under their control. For example, one meta-PA

might tightly couple planning and scheduling while another might loosely couple them. At a

higher level, meta-PAs might use different algorithms to accept a stream of planning requests

and distribute them to PAs that are not already busy.

The MPA framework has been used to develop several large-scale problem-solving sys-

tems for the domain of Air Campaign Planning (ACP), which was first used in ARPI’s IFD-4

1

(Fourth Integrated Feasibility Demonstration). MPA was used as the infrastructure for ARPI’s

Technology Integration Experiment (TIE) 97-1, providing plan generation and evaluation ca-

pabilities. This application integrated a set of technologies that spanned plan generation,

scheduling, temporal reasoning, simulation, and visualization. These technologies cooper-

ated in the development and evaluation of a complex plan containing over 4000 nodes. This

integration has validated the utility of MPA for combining sophisticated stand-alone systems

into a powerful integrated problem-solving framework.

Three demonstrations are described in this paper, as examples of the use of MPA. The

interaction between the planner and the scheduler in one demonstration is described in some

detail, as an example of how two MPA agents might interact.

This paper is a working document that describes MPA from the point of view of someone

wishing to create an MPA agent. This project’s home page can be found at

http://www.ai.sri.com/˜wilkins/mpa

Disclaimer: Frequent modifications to this document should be expected. Please report

errors and suggestions to wilkins@ai.sri.com.

2 The Multiagent Planning Architecture

MPA is organized around the concept of aplanning cell, which consists of a collection of

agents committed to a particular planning process. A planning cell contains two distinguished

agents — theplanning-cell managerand theplan server. Theplanning-cell managercom-

poses a planning cell drawn from a community of agents and distributes the planning task

among the selected agents. Theplan serveris the central repository for plans and plan-related

information during the course of a planning task. It accepts incoming information from PAs,

performs necessary processing, stores relevant information, and makes this information ac-

cessible to any PA through queries. An optionalknowledge serverstores application-specific

information of relevance to the planning process, which may be shared among all cell agents.

The knowledge server might store, for example, situation models, an object hierarchy, legacy

databases, and the set of action descriptions to be used in planning.

MPA also supports the use of multiple planning cells to simultaneously produce alternative

plans. Multiple planning cells are controlled by ameta planning-cell manager, which accepts

a stream of asynchronous planning requests and distributes them to available planning cells.

A meta planning-cell manager implemented in MPA is described in Section 5.1.

2

Supporting the MPA architecture requires a significant amount of infrastructure. One com-

ponent is ashared plan representationthat can be understood by all planning agents. MPA

employs the Act formalism for this purpose, as described in Section 2.3. Additional compo-

nents include a communication substrate to support multithreaded interagent message passing

across networks, and tools to facilitate the construction of agents and planning cells. MPA

provides both a message format and a message-handling protocol to support the sharing of

knowledge among agents involved in cooperative plan generation. With MPA messages, soft-

ware modules written in different programming languages can easily communicate. We have

demonstrated agents written in C, C++, LISP, and Java communicating with each other.

In this section, we describe planning cells and the common plan representation. MPA

intends to have PAs communicate using the common plan representation and the agent com-

munication languages being developed by other ARPI projects, but other alternatives are being

explored as well. Agent-construction tools and communication capabilities are described in

Section 3, plan servers are described in Section 4, and planning-cell managers are described

in Section 5.

We have reviewed emerging standards for distributed architectures and attempted to be

consistent when possible with other agent frameworks, particularly the ARPA efforts in I3

and AITS (formerly JTF-ATD). To better understand the capabilities our architecture ought

to support and to help make MPA as useful as possible to the broader ARPI community, we

surveyed the software tools and products that are available or under development by ARPI

researchers. The results of this survey will identify technologies that are sufficiently far along

in their development to be considered for inclusion as PAs.

2.1 What Is an agent?

The termagenthas been used in many, often meaningless, ways. Petrie gives a good overview

of various uses of this term and concludes [11]:

... “intelligent/autonomous agents” is a term that, for the moment, is not of

obvious utility.

We take a systems-engineering approach to agents, and discuss here the types of agents

that are useful for building planning systems. Within Petrie’s classification of agents, MPA

agents aretyped-messageagents, which are described as follows:

3

[typed-message agents] take more of a systems-engineering approach to defin-

ing agents, which has the advantage that it more objectively distinguishes agents

from other types of software. ... agents communicate using a shared outer lan-

guage, inner (content) language, and ontology.

Within this context, MPA’s notion of agent is quite broad. One of the goals is to organize

a community of agents, mostly programs, to solve a problem. Thus, in addition to supporting

agents with beliefs, desires, and intentions (“intelligent” agents) the architecture must provide

support for lower-level activities. For now, we’ll call these lower-level processes “agents”,

because they are defined and invoked in the same way as more intelligent agents.

Agenthood in the MPA is a fuzzy classification, made for pragmatic reasons. All agents

should have

� A well-defined functionality

� The ability to communicate in the common language

� A precise interface specification, including the capabilities and accepted languages of
the agent

� The ability to handle asynchronous incoming messages (this ability may be provided by
a wrapper or facilitator and does not need to be encoded in each agent)

In the following discussion, we use the termexternalto refer to programs/agents that are

not in the same program address space as a given agent. Examples include agents making re-

quests over the net and a LISP process on one machine requesting execution of a C++ program

on the same machine.

Several factors might warrant promoting a functionality to agenthood:

� The functionality would be used by external agents. A subroutine used only internally
by different modules of the same system need not be specified as an agent. However, it
could be desirable to do so because agent specifications encourage good documentation
and good programming practice.

� There are multiple ways to provide the functionality, and thus multiple agents to respond
to a request for the functionality.

� The functionality performs a significant amount of computation or applies a significant
amount of knowledge, from the point of view of other agents.

4

� The functionality is not readily available in the programming environment.

It is useful to distinguish between certain types of agents. Possibilities includefacilitator

agentswhose function is to handle asynchronous incoming messages for other agents or to

distribute messages for other agents,server agentswhose only function is to retrieve data and

answer queries about the data,dispatch agentsthat determine the most efficient means for

invoking a given agent or functionality, andbroker agentsthat find an appropriate agent for

fulfilling a given role. A standard subroutine could become an agent by combining with a

facilitator-agent that handles incoming asynchronous messages. This would allow such sub-

routines to be invoked by a message, possibly from a remote site. We expect to develop a

deeper classification of agent types as we further populate our architecture with agents.

Functionalities that only answer queries and retrieve data can be combined into one server

agent that is able to answer a range of different queries. There are trade-offs here: a common

query might be its own agent so as not to overload a server agent. If there are different ways

to provide the information, then multiple agents should be used.

2.2 Planning Cells

MPA planning cells are hierarchically organized collections of planning agents that are com-

mitted to one particular planning process for a given period of time (see Figure 1). Each

planning cell has a meta-PA that serves as the planning-cell manager (or, simply thecell man-

ager), which decomposes a planning task and distributes it to the PAs of the planning cell.

Cell managers hierarchically decompose a planning task and distribute it to the PAs and

meta-PAs of a planning cell, as shown in Figure 1. The planning cell is the closure of all

PAs (and meta-PAs) registered by the cell manager and any PAs they invoke. Individual cell

managers compose their planning cells to reflect their own planning approach. For example,

a mixed-initiative meta-PA may include human agents in its cell. One cell manager might

loosely couple planning and scheduling, while another might tightly couple them.

The cell manager maintains a Planning-Cell Designator (PCD) that defines a set ofrolesto

be filled. A role constitutes a capacity or responsibility, such as plan generation or scheduling.

Each role must be filled by an agent with the capabilities required by that role. The PCD

records the name of the agent that fulfills each role in the current planning cell at any given

point in time. (The agent playing a role may change during the planning process.) The cell

manager stores and maintains the PCD, broadcasting changes to the cell agents as appropriate.

5

Figure 1: The composition of a planning cell. A meta-PA acting as the cell manager both
distributes the planning task to both PAs and other meta-PAs, and oversees the overall planning
process.

Local copies of the PCD are maintained by each agent to eliminate frequent queries to the cell

manager for current role assignments (thus substantially reducing interagent message traffic).

Composing a planning cell involves establishing communication with an agent for each

specified role in the PCD, where these agents are then committed to this particular planning

process. The cell manager registers the agents that are part of the cell. Currently, our cell man-

ager either uses a prespecified planning cell or permits a human user to select a planning cell

from a set of specific agents. As MPA expands to include different technologies with similar

or overlapping capabilities, it will be desirable to compose a planning cell by broadcasting for

agents with the required capabilities. Note that if several agents can fill a role, the role may

be filled by a broker agent that would then be responsible for routing any messages it receives

to other agents. Most ARPI technologies currently have capabilities or input languages that

differ from other similar technologies, so automatic construction of a planning cell by widely

broadcasting a message is not yet feasible.

Developing acapabilities modelfor agents is not part of the charter of MPA. Nevertheless,

each planning agent should describe inputs, outputs, side effects, and other attributes such as

whether it reads and/or writes from/to the plan server, what answers it produces, whether it

produces a single answer or multiple answers, whether all possible answers are returned, and

whether the answer returned is optimal or just a heuristic selection. This enables one agent to

replace another in a planning cell simply by meeting the stated specifications.

6

A key distinction made in the I3 architecture is that between environments and config-

urations. An environment corresponds, in our architecture, to the entire family of available

agents and the services they provide. A configuration corresponds to a specific planning cell

that has been configured by a metaplanning agent to solve a specific planning problem. The

I3 architecture refers to templates that are used to generate configurations. In our architecture,

we use the more general notion of metaplanning agents, who might in turn use a template to

generate a planning cell (configuration).

2.3 Common Plan Representation

We reviewed ongoing efforts in a number of DARPA programs to develop common ontologies

and plan representations, including KIF, Ontolingua, the JTF C2 schema, and CORBA. Until

an adequate common plan representation (CPR) at a low enough level of detail emerges as

the ARPI standard, we are using the Act formalism [18] as the MPA plan representation. An

extended version of Act may be suitable for fleshing out the JTF CPR in enough detail to make

it usable.

Act has been used as an interlingua in a number of SRI projects, including both DARPA

and NRaD projects, and has been used by the University of Michigan and Orincon in the

Ships Systems Automation program of DARPA [2]. Act currently can represent planning and

execution operators, as well as completely instantiated plans. As part of MPA, Act has been

extended to support hierarchical plans at multiple levels of detail, using the concepts of task,

plan, and action network, as described in Section 2.3.1. A separate document summarizes Act

and defines its syntax [10].

We intend to modify MPA as required to be compatible with any ARPI-standard CPR. Act

has shortcomings as a CPR, and will be extended as long as it remains the CPR of choice. We

have extended it to incorporate the MPA plan model, and to support ASCII Acts. MPA records

global data about a plan as annotations (see Section 4), and these may need to be considered

as part of the CPR.

An Act is the basic structure used to represent a plan or plan fragment in the Act formalism.

The Act-Editor system supports the graphical creation, manipulation, browsing and display of

Acts, thus serving as a graphical knowledge editor for systems that use Act. The Act-Editor is

in use at several sites and has a manual describing its capabilities [9].

7

Figure 2: The structure of plan information: Each planningtaskcan be composed of several
alternativeplanswhich in turn are composed of increasingly detailed expansions of the plan
calledaction networks.

2.3.1 Plan Model

Planning cells can be generating different alternative plans for the same task, or working on

different tasks. Thus, the plan server and all MPA messages must keep track of the task and

the plan alternative as well as the actual action network.1

The MPA plan model distinguishes the concepts of task, plan, and action network, as

shown in Figure 2. Most MPA messages that denote a plan require 3 arguments: the task, the

plan, and the action network. Certain message are plan-level queries or updates, which do not

need an action network argument.

A task is a set of objectives, the current situation, and other similar information. For

example, a task may include actions that must be included in any plan, or advice, but such

things may also be included as assumptions on a plan.

A number of alternativeplanscan be produced for a given task. A plan consists of the

whole set of information about the course of action generated for this task, possibly including

multiple views and multiple action networks. Each plan might have a set ofassumptions.2

An action networkis a description of the plan at some point it its development such that all

agents querying that action network will get the same partial order of goals and actions. We

will refer to the elements of an action network asnodes, where a node can represent an action

1We have included Austin Tate and Adam Pease in discussions of the MPA plan model to maintain compati-
bility with the JTF common plan representation.

2Whether a particular statement should be a part of the task or an assumption in the plan is a fuzzy distinc-
tion that can be made appropriately for a given domain. This will allow users to talk about tasks, plans, and
assumptions in way that may correspond more naturally to their given domain.

8

or a goal (among other things). Action networks are intermediate results in some planning

process and may be at multiple levels of abstraction.

2.3.2 ASCII Acts

Before MPA, Acts were represented as Grasper-based data structures [6, 10] to support their

display display.3 Because plans and plan fragments must be easily communicated between

planning agents, we defined a syntax for ASCII specification of Acts, and documented it

in BNF. We have extended the Act-Editor to print Grasper-based Acts and files of Acts in

this ASCII specification, and to read this specification and create Grasper-based Acts, thus

allowing graphical display and manipulation of ASCII Acts.

A separate document summarizes Act, describes functions for manipulating ASCII Acts,

and specifies the current syntax for ASCII Acts [10] (superseding the appendix in our in-depth

description of Act [18]).

3 MPA Infrastructure

An MPA planning cell requires low-level communication capabilities to support asynchronous

agent communication across networks, particularly the Internet. Within MPA, software mod-

ules written in different programming languages can easily communicate. Utilities to facilitate

the construction of agents and planning cells are also required. For example, a capabilities

model will aid in planning cell construction.

In this section, we describe wrappers and agent libraries developed by SRI to facilitate the

construction of agents and planning cells, and MPA’s low-level communication capabilities.

3.1 Agent Construction and Wrappers

MPA provides wrappers and agent libraries that support interagent message passing, multi-

threaded processing, tracing of messages on the screen, and logging of messages in a history.

Eventually an agent construction tool would be desirable, such as the one that is part of the

3Grasper-CL is a programming-language extension to LISP that introduces graphs — arbitrarily connected
networks — as a primitive data type. Grasper-CL is used as a uniform basis for the man-machine interface of
many SRI systems, and is also used extensively outside of SRI.

9

Open Agent Architecture (OAA) [7], but such a tool is not possible under the current level of

effort.

To allow more complex responses to incoming requests, such as interrupting certain re-

sponses to reprioritize the computation, it is possible to combine SRI’s PRS (Procedural Rea-

soning System) [19] with the MPA LISP wrapper. The use of PRS wrappers is complicated,

requires a knowledge of PRS and the Act formalism, and is facilitated by our examples. How-

ever, MPA provides several agents that can be used as examples — PRS is the basis for both

our cell manager, plan server, and meta planning-cell manager. PRS is not a required part of

any agent, and agent interface specifications are independent of PRS.

MPA agents have been implemented in C, C++, LISP, and Java. MPA provides an exten-

sive wrapper for LISP, and some support for C, as described below.

3.1.1 LISP Wrapper

MPA provides an agent wrapper in LISP that supports asynchronous interagent communica-

tion, including functions for making, sending and replying to messages that log and trace the

message exchange. There are also functions for starting and killing agents, and for starting

and stopping tracing. This wrapper can easily be employed by any agent running in LISP.

Other sites have been able to download our wrapper and get an existing LISP program com-

municating as an MPA agent in one day.

In SRI’s software distribution, the wrapper is defined as the core of SRI’s MPA system,

which is loaded by all agents. Several wrapper functions are described in Sections 9 and 3.5.2.

Documentation for wrapper functions is in Appendix A.

3.1.2 C Wrapper and Agent Library

MPA provides a library of C functions that can be used to implement a C-language wrapper

for an existing “legacy” agent. This library provides an asynchronous message handler that

invokes the executable image for the legacy agent as requested, and returns the responses. The

handler must be programmed to translate specific messages into suitable invocations of the

legacy agent (e.g., appropriate command line arguments).

The library includes a set of functions for parsing LISP s-expressions, which facilitates

interaction between LISP-based and C-based agents, and allows the C agents to handle the

10

LISP-like MPA message syntax. Logging of messages is supported. The use of this library is

documented in Appendix B.

3.2 Managing Agents

MPA makes use of a program named Startit from OAA to initiate, monitor, and termi-

nate a set of agents. Using Startit greatly facilitates the process of starting and control-

ling agents. Several Startit configuration files have been written for various MPA demon-

strations and can be used as templates for customized planning cells. These files are

mpa/released/oaa/*.config

Thempa/released/doc/ directory contains documentation on how to run Startit and

how to run various demonstrations that use Startit configuration files.

3.3 How Will Agents Communicate?

Three software packages were considered for providing the low-level communication sub-

strate for invoking procedures over a network:

� Knowledge Query and Manipulation Language (KQML) [4], developed with ARPI sup-
port by Loral and the University of Maryland Baltimore County

� Inter-Language Unification (ILU) [5], developed at Xerox-PARC

� Open Agent Architecture (OAA) [7], developed at SRI International

Currently, MPA is demonstrated on top of KQML, until such time as efficiency or robust-

ness considerations force us to consider another approach. A preliminary implementation of

MPA on top of OAA also exists, and an implementation based on ILU is being developed.

The desired substrate can be selected using the variablecl-user::*mpa-substrate* (see

Section A.1).

KQML is not CORBA-compliant, but has good high-level support for declaring agents

and services and facilitating their use. It has been used fairly extensively (both within and

outside of ARPI). The KQML developers stress their set of high-level performatives with

semantics. While we view the semantics of the given performatives as weak, we believe the

use of standard performatives is the best way to proceed. OAA provides more high-level agent

facilitation than does KQML.

11

3.4 KQML

We found KQML to be easy to use initially, and have made several extensions to KQML’s

LISP interface to improve its robustness and efficiency. Information on KQML can be found

athttp://www.cs.umbc.edu/kqml/ .

SRI extended the KQML system used within MPA with SRI’s system-management code.

This provides version control and a patch facility (for LISP agents), which is of crucial impor-

tance in maintaining working demonstrations. We have distributed our system code to other

KQML users, and written clearer instructions for using KQML than previously existed. We

have uncovered a few bugs that have been fixed in the SRI version of KQML. With these

fixes, we have found KQML to be fast enough even for low-level messages (where a tenth of

a second is adequate response), and its high-level facilitation to be useful.

In SRI’s software distribution, KQML is automatically loaded as a subsystem by the MPA

system. Thus, the following command will load both KQML, the MPA LISP wrapper func-

tions, and all patches to these two systems:(sri:load-system :mpa) .

3.5 MPA Messages

MPA provides both a message format and a message-handling protocol to support the sharing

of knowledge among agents involved in cooperative problem solving. The message facility

is built on KQML, which provides a set of high-level performatives, calledcommunication

performativesin MPA. MPA further specifies its own set ofplan performatives, which further

specialize messages to MPA. Combinations of communication and plan performatives define

the message protocols and the operations that agents may attempt to invoke by using other

agents, thus providing a substrate on which to build higher-level models of agent interaction.

The same KQML-based messages are used for all communication substrates. In particular,

they are used for the OAA implementation. With MPA messages, we have demonstrated

agents written in C, C++, LISP, and Java communicating with each other. The following

sections document the messages used to communicate between various MPA components.

3.5.1 Detailed Syntax of Messages

MPA messages are built using KQML messages, which are lists composed of a performative

followed by a set of fields specified as keyword and value pairs. Of particular importance is

12

the :content field, which contains the real content of the message, and can be specified in any

agreed upon language. The :reply-with field denotes whether or not a reply is expected, and

must be non-nil to get a reply.

MPA uses a communication performative to begin a message. The content field of an

MPA message begins with aplan performative, which is a keyword. Plan performatives are

also included in the content of any replies. The general form of the content field of any MPA

message (sending or reply) is

(:plan-performative {value} {keyword-and-value-pairs})

Throughout this document, bracesfg show optional entities. The first value is the plan per-

formative (a keyword), the second (optional) value is an arbitrary value, followed by optional

fields specified as keyword and value pairs. The allowable values, both for the optional value

and the fields, are dependent on the plan performative being used. The one field that may be

used for all plan performatives is :error. When there is an error or unexpected condition, the

replying agent adds an :error field to the message, whose value is generally a string explaining

the problem, suitable for passing on to a user.

Below are two sample messages sent by the cell manager to the plan server. The first is

used to verify that the receiving agent is alive; for this reason a reply is requested. A sample

response is provided. The second message informs the receiving agent of an update to the

PCD; it requires no response. These messages are handled by all agents.

(evaluate :sender pcm :reply-with ping

:content (:ping))

(reply :sender "plan-server"

:content (:ping :ok))

(tell :sender pcm :content

(:pcd ((:pcm "pcm")(:planner "sipe")

(:scheduler "opis")

(:plan-server "ps1"))))

In the MPA release, there are logs of actual message traffic in subdirectories beginning with

log in /mpa/released/doc/ . For example, to see the messages during the planning for

the TIE 97-1 demonstration, look at the files in/mpa/released/doc/log-97-123/ .

13

Agents, particularly the plan server, will respond to messages that are not intended to

have replies if the :reply-with field is non-nil. The standard content field of such a reply is

(P-PERF :ok) , whereP-PERF is the plan performative of the incoming message. This is

referred to as an :ok message.

3.5.2 Wrapper Functions for Messages

The wrapper function for creating an MPA message to be sent ismpa:make-msg . The

message is sent with the functionmpa:send-msg , which sends the message, and (depending

on the settings of global variables) both traces the message exchange in a window on the screen

and logs the exchange in a history. Reply messages are generated using the following wrapper

functions, which are documented in Section A:

mpa:make-response mpa:make-response-key mpa:make-ok-response

mpa:always-reply mpa:unknown-perf-response

For example, the standard reply for an unrecognized plan performative,P-PERF, is gen-

erated with this call to a MPA wrapper function:

(mpa:unknown-perf-response P-PERF MESSAGE)
which generates the message:

(error :content (P-PERF :unrecognized-plan-performative
:error "Unknown plan performative P-PERF for C-PERF"))

whereMESSAGEis the received message that contains the error,C-PERF is the communica-

tion performative beginning it, andP-PERF is the plan performative.

3.5.3 Pseudoagents

Currently, KQML is restricted to having one agent in each image. We have developed a

protocol for allowing multiplepseudoagentsin an image. Our protocol requires different

pseudoagents to handle different plan performatives. When a distinction is required, we use

“agent” to refer to a KQML agent, and “pseudoagent” to refer to agents inside one image that

would be agents if KQML permitted multiple agents in an image.

For example, the planner image may have many pseudo-agents that respond to a given

communication performative, e.g. Evaluate. We assume that each image has only one pseudo-

agent for responding to a particular plan performative. For example, if the planner image has

14

a pseudoagent that uses Tachyon to respond to a :temporal-ok? plan performative, then all

messages using the Evaluate and :temporal-ok? performatives will go to this pseudoagent.

If either the communication or plan performative is different, then it is possible to direct the

message to a different pseudoagent.

By assuming that each agent has only one pseudoagent that can handle a given plan per-

formative, the message handlers can be coded to distribute messages based on their plan per-

formatives. Without this assumption, we would have to register the pseudoagents within each

agent to keep track of the pseudoagent currently being used for each request.

3.5.4 Reporting Errors

When there is an error or unexpected condition, the agent replying to a request adds an :error

field to the message, whose value is generally a string explaining the problem, suitable for

passing on to a user. Such error keywords can appear if three categories of messages:

1. replies with an Error communication performative, perhaps with the plan performative.

2. replies with a either an Error or Reply communication performative, and the normal
plan performative.4

3. messages with the normal communication and plan performatives.

(1) is used for errors where the agent could not understand or start processing the request.

An example is the unrecognized plan performative error described above.

The latter two are used when the request could be processed, but the processing failed or

had an error after invocation. ((3) is used when the requestor is not waiting for a reply, and (2)

is used when requestor is waiting.)

For example, if a meta planning-cell manager cannot recognize the syntax of a request,

(1) would be used. If it recognizes the syntax, but cannot find the necessary planning cells,

(2) would be used. If it started planning in a planning cell (causing a non-error reply to the

initial request), but later fails to find a solution, (3) is used (with a :failed plan performative

sent to the requestor). Such a meta planning-cell manager implemented in MPA is described

in Section 5.1.
4This option is often identical to (1) if the Error communication performative is used.

15

The wrapper functionmpa:make-response-key (see Appendix A) is generally used

to construct a message for case (2) by specifying the :error keyword. For agents that control

their own logging and tracing, the :log keyword should be specified as nil.5

4 Plan Servers

MPA can be assigned a planning task for which multiple plans may be developed depending on

context, advice or other factors. For each alternative plan being developed, a cell of agents is

committed to the planning process. The question arises of how to maintain and communicate

the current plan state within a planning cell. Our architecture accomplishes this by having a

plan serveragent in each planning cell, although a single plan server agent can be shared by

multiple planning cells. The plan server is apassiveagent in that it responds to messages sent

by other agents. It does not issue performatives to other agents on its own initiative.

The plan server provides the central repository for plan and plan-related information. A

plan model based on the concepts of task, plan, and action network is described in Sec-

tion 2.3.1. The plan server must be able to represent multiple tasks each with multiple al-

ternative plans. This approach is useful when such alternatives share a lot of structure.

The plan server accepts incoming plan information from agents, performs necessary pro-

cessing, and stores relevant information in its internal representation. This information is then

accessible to any cell agent through queries. The plan server maintains all data structures asso-

ciated with the evolving plan. Because a plan server must be able to stand alone, independent

of the control structure or state of any planning agent, the information it contains must in-

clude not only the partially ordered actions of the plan, but also contexts, backtracking points,

declarative information about the state of the plan (e.g., a list of flaws), and so forth.

A plan server should be able to record a history of all changes made to its data structures,

including the name of the requesting agent. Queries could also be included in the history.

Histories are useful for debugging, and this capability can be disabled for efficiency, if desired.

A plan server should have declarative equivalents for its information that can be passed to other

agents or written to files. Pedigree management (i.e., recording the source of plan derivation)

is another desirable service.
5For no particular reason, our PRS-based agents were written to localize all reply construction and logging

in the handler functions, so the MPA wrapper functions are only used there. The code for this agents either
constructs error values explicitly or uses the functionprs::print-return-error , which prints the error
to the PRS interface, and returns the error value for later use in a call tompa:make-response .

16

An MPA plan server is also responsible for storing relevant information about the task,

plan, and the planning process, and notifying various agents of relevant planning events. These

capabilities are implemented byannotationsand triggers, which are each described in their

own sections. It is also necessary to document the types of plan queries that can be serviced

by the plan server.

An MPA plan server embodies the notion of differentviewsof a given plan, a powerful

feature of MPA not found in other architectures. A view constitutes some aspect of the plan

that could be relevant to individual MPA agents. For example, the resource usage in a plan

might be one view of the plan. Certain views are directly retrievable from the plan server

(e.g., plain-text and graphical representations), while others must be computed by running

algorithms over the basic plan representation (e.g., resource usage).

Views allow the plan server to provide better service to other agents. These agents can get

information in forms they can use instead of having to include their own software to extract

the desired information from the underlying representation (which can be excessively large).

For example, the resource view of the plan might return a representation of the resources used

without needing to return the entire plan structure from which the requesting agent would have

to extract the resources.

Many other plan-server features are desirable, although not strictly necessary for plan gen-

eration. Our research is not concentrating on such features, which include providing persistent

storage, controlling access to the plan or its parts, providing version control for plans, and de-

veloping graphical browsing capabilities.

In general, a large amount of data is static for a given domain, that is, it remains the same

for each alternative plan. This information need not be stored in each plan server used in this

domain. Instead, a knowledge server will handle requests for static knowledge (perhaps a

plan server forwards such requests). For example, the knowledge server might keep dictionar-

ies, the object hierarchy, legacy databases, the set of action descriptions, and customizations

required by agents for use in this domain (e.g., what model of time to use).

In addition to describing triggers, annotations, and queries, this section describes a PRS-

based plan server, referred to as theAct Plan Server, which we implemented for MPA. The

Act Plan Server implements new MPA features, but has many shortcomings as an operational

plan server.

17

Plan Performative Communication Performatives
:annotation Insert

Delete
Ask-All
Ask-One

:trigger Insert
Delete
Ask-All
Ask-One

:update-task Tell
Delete

:query-task Ask-All
Ask-One

:update-plan Tell
Delete

:query-plan Ask-All
Ask-One

:query-node Ask-All
Ask-One

:ping Evaluate
:pcd Tell

Figure 3: Plan Server Plan and Communication Performatives

4.1 Communication and Plan Performatives

The currently allowed combinations of communication and plan performatives in messages

handled by an MPA plan server are shown in Figure 3. Ask-One is the appropriate communi-

cation performative for plan queries when only one answer is desired, while Ask-All is used

when all answers (i.e., a set of answers) are desired.

Annotations and triggers are enough like database objects that the plan server uses the

database communication performatives for manipulating them. Updating and querying a plan

is more complex than adding and deleting something from a database. Therefore, we have a

richer plan performative language for manipulating plans. The performatives described here

are an initial set that will be extended. The detailed syntax of these performatives is given in

Section 9. Examples of the plan performatives are given in the following sections.

18

(ANNOTATION <basic-annotation>
:task TASK :plan PLAN :action-network A-NETWORK)

(ANNOTATION <basic-annotation> :task TASK :plan PLAN)
(ANNOTATION <basic-annotation> :task TASK))
(ANNOTATION <basic-annotation>)

Figure 4: Variants of Annotations: these variants distinguish action-network-specific from
plan-specific from task-specific from task-independent annotations.

4.2 Annotations

Annotations are declarations of high-level attributes of either a plan or the state of the plan-

ning process. Useful annotations for tasks, plans, and action-networks (product annotations)

include flaws or problems to be repaired, plan quality information, pedigree (how and by

whom parts of the plan were derived), and comparative relationships among alternative plans

and plan fragments. Annotations related to the planning process (process annotations) could

include time spent and the current state of development for a given plan (e.g., :ongoing, :com-

pleted, :failed).

Annotations can be posted to the plan server by any cell agent, including the plan server

itself. Annotations are encoded as predicates and stored in the plan server’s database. Prod-

uct annotations are indexed by task/plan/action-network, thus allowing flexible retrieval (e.g.,

finding all plans or action networks that have a given annotation, or finding all annotations for

a given plan, task or action network).

To distinguish action-network-specific from plan-specific from task-specific from task-

independent annotations, four variants are used as shown in Figure 4. The syntax shown is

used in query messages, but not in the returned answers, which omit the keywords. In Figure 4,

<basic-annotation> corresponds to an arbitrary annotation predicate (which generally

will not specify the plan to which it applies). In the Act Plan Server, the keywords in Figure 4

must be given in the order shown (inside an annotation form only).

The following are examples of basic annotations that might be used to coordinate PAs

within a meta-PA:

(Time t) Posted at the completion of a action network, or planning level, to indicate the

amount of time spent. Timing information could be used to modify the strategies used

for planning. If the planning process is consuming too much time, the cell manager

might switch to a more efficient strategy.

19

(Node-Expanded node)Posted when a goal has been completely expanded; a meta-PA

might, for example, apply the scheduling critic after every expansion.

(Level-Complete) Posted when an action network, or planning level, has been completely

expanded; a meta-PA might invoke the Critic-Manager.

(Plan-Complete) Posted when a final plan (action network) has been generated; a meta-PA

might invoke the Critic-Manager in a different mode.

(Final-Plan) Indicates that the plan is final and has been approved by all critics.

The latter three annotations were used in our initial demonstration. Lower-level annota-

tions are necessary when lower-level control of the planning process is desired. Details on the

syntax for annotation-related performatives and example messages can be found in Section 9.

4.3 Triggers

A trigger is a form of event-driven rule whose function is to notify specified PAs of a desig-

nated plan server event. An individual trigger is activated by the occurrence of a designated

event. For now, events are limited to the insertion of annotations in the plan server. Activation

of a trigger results in the dispatch of a trigger-dependent message to a designated PA. The

triggered message may simply inform the receiving agents of the triggering event, or request

that some action be taken.

Triggers can be supplied by various sources. Certain of them may be built into the plan

server, while others may be dynamically added and removed during the planning process. For

instance, the cell manager may post triggers at various times to influence the overall planning

process. Individual PAs may post and remove triggers to request notification of particular

events. The operation of triggers are contained within a planning cell.

A trigger specification must include three fields, :event, :destination, and :msg. The :msg

field specifies the message to be sent when a trigger is activated. The recipient of this message

should be specified in the :destination field, and must be anagent role.

The :event field must be an annotation fact having one of the forms shown in Figure 4,

except that each<basic-annotation> is replaced by an<annotation-schema> .

In contrast to basic annotations, an annotation schema can contain variables. Variables may

20

appear in the :msg and :event specifications. The triggering event will bind the variables appro-

priately, so they can be used in the outgoing message. Details on the syntax for trigger-related

performatives can be found in Section 9.10, including messages for deleting and querying

triggers.

This use of annotations and triggers in MPA enables a variety of control modes, and en-

ables the planning process to be controlled dynamically. For example, let’s suppose temporal

conflicts are arising frequently during the planning process, causing backtracking at the end of

every level. The meta-PA with a planning cell can be aware of this by monitoring annotations

posted to the plan server (triggers are useful for this). After noticing the temporal problems,

the meta-PA decides to invoke the temporal reasoning agent after every node expansion, in

order to catch temporal conflicts earlier and reduce backtracking. This change in control can

be easily accomplished by the meta-PA inserting a trigger in the plan server that sends the

appropriate message to the temporal reasoning agent whenever a Node-Expanded annotation

is posted.

4.4 Queries

Queries to a plan server can be involved, and particularly complex and commonly used ones

may want to be in their own agents to avoid overloading the plan server. Examples of queries

to a plan server are:

� What are the legal bindings for a plan variable?

� What are all the unsolved goals?

� What resources are required by this plan?

� Who put this action in the plan?

The query language will be under continuous development as more PAs populate the ar-

chitecture. A key feature of an MPA plan server is the generation of different views of the

plan. The plan performatives and views currently supported for queries in the Act Plan Server

are depicted in Figure 5. The query language could easily be extended — including all of the

above queries is simply a matter of agreeing on a syntax for the query messages. Detailed

explanations of each view, together with example queries and their responses are given in

Section 9.8. If no view is given, plan queries assume :task-network as the default.

21

Plan Performative Views
for tasks:

:query-task :task-network :assumptions
for plans:

:query-plan :task-network :subplans
:ascii :ascii-filename
:monitors :monitor-filename
:parent :available-resources

for action networks:
:query-plan :task-network :resource-constraints

:ascii :ascii-filename
:monitors :monitor-filename
:resource-
allocations

:query-node :predecessors :successors
:unrelated

Figure 5: Plan Performatives and Views for Queries

The :query-plan performative causes a particular view of the plan’s entire action network to

be retrieved from the plan server or computed from data stored in the plan server. For example,

if :view is :resource-constraints, a function walks over the action network and collects the

resource constraints in an interlingua. (The views that mention resources currently use an

interlingua specific to the ACP domain.)

Similarly, the :query-task performative causes a particular view of the task’s objectives to

be retrieved. Tasks are currently represented as Acts. The :assumptions view returns a free

text field. Additional views may be added later, such as retrieving the world situation.

A :query-plan message can apply to either a task, plan, or action network, while :query-

node messages always apply to action networks. The special value :all can be used for any

of those three keywords to find out which tasks, plans, and action networks are known to the

plan server. When :all is used, a list of names is returned, and the :view keyword is ignored.

(:query-plan :task :all)
(:query-plan :task TASK :plan :all)
(:query-plan :task TASK :plan PLAN :action-network :all)

The first query returns a list of all known task names, the second returns a list of all known

plan names for the given task, and the third returns a list of all known action-network names

22

for the given task and plan. The :query-task performative uses :all similarly for :task and :plan.

Any value for :plan other than :all is ignored by :query-task.

In :query-plan, a query on plans is indicated by the :action-network keyword being omitted

or having a value of :all or nil. When the value is nil or omitted, the views for plans shown in

Figure 5 are applicable.

A query on an action network is indicated by the :action-network keyword being the name

of a known action network, or the special value :last, which refers to the last action network

defined for the given task and plan. In this case, the views for action networks shown in

Figure 5 are applicable.

The substantive use of queries in the first-year demonstration is in the planner-scheduler

interaction. In the TIE 97-1 demonstration, several agents queried the plan server for the plan

and/or annotations, including the scheduler, the planner, the simulator, and the plan visualizer..

The first example is a task query that retrieves the ASCII Act representation of the objec-

tives of the given task, and the second example extracts the resource constraints of the most

recently expanded action network for the given task and plan.

(:query-task :task TASK :view :ascii)
(:query-plan :task TASK :plan PLAN :action-network :last

:view :resource-constraints)

A message with the above content field invokes a plan server function that walks over the

action network for the plan and collects and returns the necessary constraints as specified in

Section 9.

4.5 Act Plan Server

We have implemented a specific plan server, named the Act Plan Server, which employs the

Act formalism [18] for action representation. An Act is the basic structure used to represent

a plan or action network in the Act formalism. Acts can be expressed either in a format

with embedded graphical information or in plain-text format (to facilitate translation to other

languages). The Act-Editor system [9, 19] supports the graphical creation, manipulation,

browsing and display of Acts, thus serving as a graphical knowledge editor for systems that

use Act.

23

The Act Plan Server is implemented as a PRS agent. PRS is responsible for maintaining

annotations, handling and distributing incoming messages, and executing triggers appropri-

ately. PRS was chosen as the basis for implementing the Act Plan Server because of the need

to combine both declarative and procedural encodings of knowledge, as well as to support a

mixture of event- and goal-driven processing as required for the maintenance of annotations,

the handling and distributing of incoming messages, and the execution of triggers.

As with any PRSagent, the Act Plan Server includes a database for representing declarative

knowledge, a set of Acts that encode procedural knowledge about how to accomplish goals,

and LISP functions that implement the basic activities for the agent. The database storage and

reasoning capabilities are used extensively to track the plan-related information sent to the Act

Plan Server. The procedural knowledge capabilities are used for managing the activation of

triggers. In addition, PRSuses knowledge encoded in the Act formalism, MPA’s common plan

representation, and is built on the Act-Editor which can display plans graphically.

4.5.1 Limitations of the Act Plan Server

Several other architectures, including the AITS, use plan servers. Often such plan servers

are required to provide (among other features) persistence, access control, versioning, and

browsing capabilities. While we view all these features as desirable in an MPA plan server, it

is beyond the scope of MPA to implement a plan server with all of these properties.

Rather, we have implemented an Act Plan Server with several features not in other plan

servers. MPA uses these new features (e.g., views, triggers and annotations) to control com-

plex planning processes. The goal of MPA is to develop a new, more powerful architecture,

and our Act Plan Server is a step in that direction. We view it as a straightforward effort to

build the Act Plan Server on top of a plan server or database system that will provide the above

AITS plan server features, although the task may require a significant amount of effort.

The Act Plan Server stores a plan as a series of action networks that together form one

alternative plan for a given task. Action networks are stored as Acts (with links to other action

networks in the same plan), and the only persistence provided is that Acts can be saved to

files in their entirety. Alternative plans can be stored for the same task. No access control or

versioning is provided (other than the ability to store alternative plans for the same task), and

the only browsing capabilities are those provided by SRI’s Act-Editor.

The Act Plan Server supports a reasonably broad set of queries, at the level of tasks, plans,

and action networks. For example, queries can be used to extract the set of known tasks,

24

the set of plans for a given task, and the set of action networks for a given task or plan.

Annotations and triggers can be queried with a fairly general query language. Seven different

views on plans and action networks, and three different views on individual action-network

nodes (actions) can be obtained through queries. The Act Plan Server could easily support

more queries as needed, including access to individual plan and action-network components.

The current MPA project will not transition the Act Plan Server to an existing plan server

or database system, nor will it provide additional persistence, access control, versioning, and

browsing capabilities.

4.5.2 Act Plan Server Interactions

The user can interact directly with the Act Plan Server through the PRS interface by posting

appropriate goals and adding or retracting information from the Act Plan Server database. In

addition, an MPA-specificPlan Servermenu has been added to the PRS interface to enable

simpler interactions with the Act Plan Server. The menu contains the following commands;

we expect to extend this menu as the sophistication of the Act Plan Server increases.

Load Create the Act Plan Server agent, register it with the name server, create its trace win-

dows, and initialize it with all relevant database entries, Acts, and functions.

Reset Return the Act Plan Server’s database to its original state. All information about tasks,

plans, and action networks is deleted, as are all annotations and triggers.

Show Triggers Display the current set of triggers.

Show Annotations Display the current set of annotations.

4.5.3 Use of the Act Plan Server in TIEs

SRI will provide the MPA Act Plan Server running in Allegro COMMON LISP, which will

store plans as Acts, and support annotations and triggers. SRI will provide documentation

and examples for writing code to extract information from Acts, and will assist those writing

such code. Examples will include code that extracts the resources plan view from Acts in the

MPA demonstration, and the code that translates Acts to the planner’s representation. There

are several issues:

25

Annotations SRI has already specified annotations that are used by the agents in its initial
demonstration and in TIE 97-1. It is the responsibility of the producers and consumers
of any new annotations to agree on the syntax and semantics of the new annotations.

Knowledge Server In general, a large amount of data is static for a given domain, that is, it
remains the same for each alternative plan. In the MPA design, this information is not
stored in each plan server used in the domain. Instead, a knowledge server agent handles
requests for static knowledge. We have not yet implemented a separate knowledge
server, as the planner currently stores the static data for our domains.

Alternative Representations To support alternative representations, the Act Plan Server
could be extended to store plans that are arbitrary LISP expressions. Those responsi-
ble for this representation must provide LISP code to compute every query and view
that is supported over this representation.

4.6 Future Issues for the Plan Server

Several important issues for future consideration were raised during the implementation of

SRI’s Act Plan Server:

� Efficiency of firing triggers (the assumption is that there will be relatively few triggers,
efficiently indexed by annotations like Node-expanded and Level-expanded)

� Authorization (who can trigger what actions, and make what changes)

� Responsibility for managing annotations and triggers, keeping them up to date, and
updating features when needed

� Synchronization of distributed activities and potentially inconsistent updates and re-
quests

� Merging plans from local plan servers

A major problem as we move toward agents executing in parallel is to make sure changes

of one agent do not interfere with other agents. (We may not have the resources to address this

in the MPA project, but other SRI projects are interested.) One approach is to collect relevant

plan changes without making the changes, and then, at some point, adding the combined

changes. This would require some way of checking the consistency of constraints that came

from different agents, a very difficult problem. A variation on this would be to “lock” part

of the action network so certain agents could change certain parts of the action network, but

other agents could count on the locked plan to not be corrupted. These techniques are part of

our eventual vision, but are beyond the scope of the current MPA project.

26

5 Planning-Cell Managers

A cell manager is a persistent agent that can continuously accept tasks from other agents

(human or software), decompose those tasks into subtasks to be performed by its cell agents,

and then combine the results into solutions.

A planning cell can operate as a stand-alone problem-solving unit. Additionally, sets of

planning cells can be aggregated into larger cells, which are in turn controlled by ameta

planning-cell manager, which distributes and coordinates planning tasks among planning

cells. This manager is given a set of tasks to solve and a set of planning cells as resources,

and is responsible for overseeing the entire planning process. Different management schemes

are appropriate for different applications. We have focused on generating multiple plans in

parallel, using a pair of planning cells controlled by a meta planning-cell manager.

Here, we describe implementations of both a baselevel cell manager (the PCM), and a

meta planning-cell manager (the meta-PCM). Their designs serve as templates for additional

types of planning cells. In the long term, MPA will contain a library of such templates which

users can adapt as appropriate for their applications.

We have implemented one particular cell manager, the PCM, with a small number of dif-

ferent planning styles. Instances of PCM are used to control each of several planning cells.

In addition, we have implemented a particular instance of a meta planning-cell manager, the

meta-PCM. These agents are described in more detail in Sections 5.1 and 5.2.

Both the meta-PCM and the PCM are implemented as PRS agents. As with any PRS

agent, each agent includes a database for representing declarative knowledge, a set of Acts

that encode procedural knowledge about how to accomplish goals, and LISP functions that

implement the basic activities for the agent, such as sending an MPA message to another cell

agent. SRI has made the meta-PCM and PCM Acts available to the ARPI community.

PRS provides several capabilities that make it a good framework for constructing such

managers. Because cell managers direct the activities of multiple agents, they must be capa-

ble of smoothly interleaving responses to external requests with internal goal-driven activities.

The uniform processing of goal- and event-directed behavior within PRS is ideal for support-

ing such behavior. PRS supports parallel processing within an agent, thus enabling multiple

lines of activity to be pursued at any given time. The database facility within PRS enables

declarative encodings of key characteristics, making them easy to access and modify. The

Act language, used to represent procedural knowledge within PRS, provides a rich set of goal

27

Plan Performative Communication Performative
:solution Tell
:failed
:multiple-solve Evaluate
:define-advice
:new-agent
:ping

Figure 6: Meta-PCM Plan and Communication Performatives

modalities for encoding activity, including notions of achievement, maintenance, testing, con-

clusion, and waiting. Finally, the extensive textual and graphical tracing in PRS provides

valuable runtime insights into the operation of cell managers.

5.1 Meta Planning-Cell Manager

The meta-PCM is a persistent agent that can continuously accept planning requests and gener-

ate multiple plans for one or more tasks, given a set of planning cells as resources. Tasks can

be specified by either a human user or another planning agent.

The meta-PCM accepts an asynchronous stream of planning request messages(from mul-

tiple agents), each of which can request that multiple plans be produced. For each requested

plan, the meta-PCM will find a free planning cell if one exists. A planning cell can refuse a

task if it is already occupied (our PCM agent will always do so). The meta-PCM distributes

tasks to planning cells by sending messages to the cell manager of each cell. These messages

take the form of planning tasks and advice about how to solve the task. The meta-PCM may

distribute only a subset of the requests if planning cells are busy.

The meta-PCM also responds to any messages from planning cells that describe a solution

or a failure for a planning request. (These are sent by cell managers immediately upon finding

a solution or detecting a failure.) Such responses can be done simultaneously with the handling

of new requests. The plans or failures are “forwarded” to the correct requestor by sending an

MPA message. The meta-PCM also notices when all requests from a given incoming message

have been serviced, and prints a summary of the solutions in its trace window. If desired, it

could also send a summary message to the requestor or invoke a plan comparison agent.

The currently allowed combinations of communication and plan performatives in the mes-

sages handled by the meta-PCM are shown in Figure 6. Multiple-solve messages are the

28

incoming planning requests. Define-advice messages define new pieces of advice and are for-

warded to all running planning-cell managers. Solution and Failed messages report results

from planning cells. A New-agent message can be used to declare a new planning cell. Sec-

tion 7.1 explains the role of the meta-PCM during our demonstration.

The current meta-PCM has several limitations, such as not maintaining queues of requests,

and could easily be extended. The following features and limitations give a better idea of the

capability of the meta-PCM:

� If there are more requests in one message than the total number of planning cells, then
immediately send back an error saying there are not that many planning cells (without
processing any requests).

� Otherwise, accept the request and generate a name for it. Send this name back to the
requestor who can use it to match solution/failure messages received to requests.

� If all planning cells are found to be busy, send a message back to the requestor indicating
the request is being refused because of busy planning cells.

� If some, but not all, requests are assigned to free planning cells, send a message back to
the requestor indicating that only a subset of the requests will be serviced.

� For each solution or failure received, immediately forward the message to the correct
requestor.

� When all accepted requests for a given message have been serviced, remove all infor-
mation about that request from the database.

The user can interact directly with the meta-PCM through the PRS interface by posting

appropriate goals and adding or retracting information from the plan server. In addition, an

MPA-specific Meta-PCM menu has been added to the PRS interface to enable simpler interac-

tions with the meta-PCM. The menu contains the following commands; we expect to extend

this menu as the sophistication of the meta-PCM increases.

Load Create the meta-PCM agent, register it with the name server, create its trace windows,

and initialize it with all relevant database entries, Acts, and functions.

Reset Return the meta-PCM’s database to its original state. Resetting should not be necessary

except in unforeseen error conditions.

Plan Initiate planning on a user-specified task by an available planning cell. A window ap-

pears in which the user enters the name of the task to be solved; entering :none (or NIL)

aborts the request. The user is then asked for the number of alternative plans desired.

29

Plan Performative Communication Performative
:annotation Tell
:advice
:pcd
:solve Evaluate
:define-advice
:ping

Figure 7: PCM Plan and Communication Performatives

5.2 Overview of the PCM

The PCM is a persistent agent that can continuously solve planning tasks. Tasks can be spec-

ified by either a human user or another planning agent, such as the meta-PCM. Planning

requests are serviced sequentially rather than concurrently; thus, the PCM can solve multiple

tasks but only one at any given time. If the PCM gets a request to generate a plan while it is

already busy, it replies with a message indicating that it is busy. Concurrent plan generation is

accomplished by the meta-PCM, which can invoke multiple PCM agents controlling multiple

planning cells.

A cell manager is responsible for overseeing the entire planning process for a given task.

One key responsibility is the management of the PCD. The agents with assigned roles in the

PCD are referred to as thecell agents. In addition, the cell manager must determine the

appropriate problem-solving strategy to apply to a given task, and manage the distribution of

subtasks to agents within the cell. Finally, the cell manager must coordinate all results and

activities of the cell agents.

Section 7.1 describes the different strategies used by the PCM for monitoring and con-

trolling the planning process during our initial demonstration. The PCM reconfigured the

planning cell during planning and demonstrated dynamic strategy adaptation.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the PCM are shown in Figure 7. Annotation messages advise the PCM

of annotations that have been posted in the plan server. Such messages are sent by triggers

posted by the PCM itself. Advice messages select (predefined) problem-solving advice [8] to

be used by plan generation agents within the cell; the PCM will pass along specified advice to

appropriate agents when making planning requests. Define-advice messages are forwarded to

appropriate cell agents when new advice is being defined. Solve messages request the PCM to

30

PCD Role Agent Names
:manager pcm
:plan-server plan-server
:planner sipe
:search-manager
:critic-manager
:scheduler opis
:temporal-reasoneropis, tachyon
:executor executor
:requestor meta-pcm

Figure 8: Plan Cell Descriptor Roles and Their Possible Fillers

generate a plan, and Ping and PCD messages are handled by all agents. Sections 9.1 and 9.2

describe the message traffic of the PCM in more detail.

5.3 Planning Cell Characteristics

The PCM’s planning cell is characterized by two key elements: the PCD, and theplan style

to be used for problem solving. The PCD is encoded declaratively within the PRS database of

the PCM. In particular, the PCD is composed of several entries of the form

(cell-agent <role> <agent>)

These facts declare both the activeroles in the cell, and theagentsthat fill them. Each agent

name in a PCD should be the registered name for the agent.

The roles in the current PCM and their possible agent fillers are listed in Figure 8. Each

role is filled by zero, one, or a set of agents, depending on the nature of the problem-solving

process. Within the current PCM, the :scheduler and :temporal-reasoner roles are optional but

all others are required. Because of the KQML restriction of one agent per image (and in some

cases for efficiency), the “sipe” KQML agent services messages for several pseudoagents in

the initial demonstration. These pseudoagents include the Search Manager, Critic Manager,

Schedule Critic, and Temporal Critic.

Planning may commence either in response to a request by another agent, the meta-PCM

in our demo, or directly from the user. When planning commences, the PCM first determines

whether the cell agents are alive and ready to receive messages. After verifying the readiness

of the cell agents, the PCM distributes a copy of the PCD to each. Each cell agent consults

31

its local copy of the PCD to ascertain where to send intracell messages. The PCD can be

reconfigured dynamically during the planning process. When such reconfigurations occur,

updated versions of the PCD are sent to all cell agents.

Plan-style declarations are represented using the predicate(use-plan-style

<method>) . This predicate is single-valued; that is, only one style can be active at one

time. The PCM database explicitly manages the single-valuedness; thus, to change planning

styles, simply assert a use-plan-style fact into the PCM’s database.

5.3.1 Planning Styles

The PCM supports a small number of planning styles, all of which assume a level-by-level plan

generation model, derived from the hierarchical task network (HTN) approach to planning

[3]. For each level, a more refined plan is first generated, then critiqued. This model may not

apply to all planners, but is reasonably general. In particular, nothing is assumed about what

comprises a level, thus enabling a range of different level refinement methods (for example,

expansion of a single goal or all goals).

A planner can expand a plan to some arbitrary extent, as appropriate to its planning tech-

nology. All that is required is that the plan critics can be applied after each such expansion.

If critic roles are left unfilled, critiquing is skipped. In addition to HTN planners, causal-link

planners [13] fit naturally into this scheme, with goal selection, operator selection, and subgoal

generation viewed as forms of plan expansion. Causal link protection and checking constraint

consistency correspond to plan critiquing.

The PCM planning styles vary in their choice of agent to perform the plan refinement,

the selection of critic agents for the critique phase, and the frequency of critic invocation.

Currently, the PCM supports two plan styles: one where the Planner is responsible for cri-

tiques, and one where the PCM is responsible. The PCM takes different actions based on the

information returned by the Planner about the status of the expansion process.

Planner-Expand-and-Critique This method performs a level-by-level development of the

plan, where each level is generating by sending an :expand-plan-and-critique performative to

the Planner. Thus, at each level, the Planner both expands the plan and performs any neces-

sary critiques. The role of the PCM is simply to oversee the search process. The following

keywords can be returned by the Planner:

32

:final-plan The returned action network is a complete and validated solution. Receipt of such
a response terminates the PCM planning operations for the current task.

:level-complete The returned action network is a successful refinement of the previous level’s
action network. The PCM continues with this new level.

:no-expansion No expansion was found for this level. The PCM initiates backtracking by
setting expansion parameters and then reinvoking the Planner.

:plan-failure No plan was found and no backtracking is possible. The PCM abandons the
task.

PCM-Expand-and-Critique This method performs a level-by-level development of the

plan. Each level is generating by sending an :expand-plan performative to the Planner, but

the resulting action network is not critiqued by the planner. The PCM follows this plan expan-

sion phase with a separate plan critique phase under PCM control. Thus, the PCM explicitly

manages both plan expansion and critiquing. This method is the default and has been used in

all MPA demonstrations, including TIE 97-1.

In response to an :expand-plan performative, the Planner can return the latter three key-

words listed above (and the PCM response is the same). However, the :final-plan keyword can

never be returned, as critiquing has not been performed by the Planner. Instead, the following

keyword may be returned:

:plan-complete The returned action network is complete but still needs to be verified by the
appropriate critics.

The PCM-controlled critique phase involves the application of all critics that are currently

declaredfor the Plan Cell. Critic declarations are encoded in the PCM database as facts of the

form: (cell-critic <critic-performative> <role>) . Each declaration defines a

critic performative and the cell role that is responsible for managing the corresponding critic.

A critic performative is simply a plan performative that is handled by an agent that is con-

sidered to be a plan critic. The PCM sends a message to invoke each declared critic. Such

messages use the Evaluate communication performative, and the content is:

(P-PERF :task TASK :plan PLAN :action-network A-NETWORK)

Currently, only the critic performatives :plan-ok?, :temporal-ok?, and :schedule-ok? are

supported by the PCM, all of which are managed by the Planner. The critic returns a value

indicating whether its critique revealed any problems. Any such problem causes the PCM to

backtrack or terminate prematurely.

33

5.3.2 Database

Additional predicates are used in the PCM database to control cell activities. Currently, the

only predicate of significance to users is

(use-params <plan-perf> <param> <value>)

which controls the inclusion of optional keyword arguments for plan performatives. These pa-

rameters control low-level processing instructions for the cell agents that service the specified

plan performative (for example, whether to check phantoms when doing a plan expansion).

When a performative is to be sent, the PCM checks its database for any declarations of key-

word arguments for the performative and includes those that it finds in the content of the

message sent.

5.4 PCM Invocation

The user can invoke the PCM through the PRS interface by posting appropriate goals and

adding or retracting facts from the PCM’s database. This is made possible by the declar-

ative approach used to encode relevant PCM characteristics. In addition, an MPA-specific

Plan-Cell menu has been added to the PRS interface for interactive control of the PCM. The

menu contains the following commands; we expect to extend this menu significantly as the

sophistication of the PCM increases.

Load Create the PCM agent, register it with the name server, create its trace windows, and
initialize it with all relevant database entries, Acts, and functions.

Reset Return the PCM’s database to its original state. Resetting should not be necessary
except in unforeseen error conditions. Resetting the PCM does not change the state of
any other PA in the cell.

Define Cell Using a menu, the user can interactively specify the composition of the planning
cell and relevant cell parameters.

Plan Initiate planning on a user-specified task. A window appears in which the user enters
the name of the task to be solved; entering :none (or NIL) aborts the request.

Plan-with-CTEM For ACP planning domains only, initiates planning on a user-specified
task using an Act for three-phase planning: pre-CTEM planning, a CTEM run, and
post-CTEM planning of support missions.

34

Alternatively the operation of the PCM can be controlled by another agent. We have

implemented a meta-PCM agent which can coordinate the operation of multiple planning

cells to produce multiple plans simultaneously. The meta-PCM, described in Section 5.1,

distributes tasks to planning cells by sending messages to the cell manager of each cell, and

handles messages about completed or failed plans.

5.5 Use of The PCM in TIEs

SRI wrote Acts for its PCM to incorporate the demonstration flow of TIE 97-1. For agents

not already part of MPA, it is the responsibility of the agent implementor to determine the

correct performatives and message syntax for invoking the agent, write handlers for such mes-

sages, and determine the syntax for any messages returned or sent (e.g., to the plan server) by

the agent. The agent implementor must also document the I/O specifications for each agent,

including any side effects on the plan server, and ensure that all users and consumers of the

services provided by this agent are aware of (and agree to) the protocols and documentation.

SRI may require certain messages to be sent by agents to the PCM at certain times.

SRI has made the meta-PCM and PCM Acts available to the ARPI community. The PCM

does not currently support the user interacting with an agenda, and SRI does not plan to

implement a GUI for such a purpose under its current contract.

6 Integrating Planning, Scheduling and Execution

The previous sections described agents that were written specifically for MPA, the meta-PCM,

the PCM, and the Act Plan Server. Here we describe the modularization of legacy software

systems into MPA agents. We first describe the use of executor and plan manager agents for

continuous planning and execution, and then the use of an existing planner and an existing

scheduler in MPA.

6.1 Continuous Planning and Execution

If plans are to be executed in dynamic environments, there must be agents able to deal with

unpredictable changes in the world. As such, agents must be able to react to unanticipated

35

events by taking appropriate actions in a timely manner, while continuing activities that sup-

port current goals. Agents must have the ability to recover from failures by adapting their

activities to the new situation, and/or repairing the plan. We will refer to an agent with these

capabilites as anexecutoragent, because the MPA protocols described here support the role of

an agent executing a plan and doing plan repair. (As described below, the executor capabilites

are only some of the many desireable functionalities.)

Two different demonstrations show the use of MPA for continuous plan repair. The first

demonstration is a distributed, multiagent version of SRI’s Cypress system in the domain of

joint military operations planning [17]. The second demonstration is a distributed, multiagent

version of SRI’s CPEF system (Continuous Planning and Execution Framework),6 in the do-

main of air campaign planning (using an extended version of the TIE 97-1 planning knowledge

base, but a different scenario).

The executor is always active, constantly monitoring the world for goals to be achieved or

events that require immediate action. In accord with its current beliefs and goals, the executor

takes actions in response to these goals and events. Appropriate responses include applying

standard operating procedures, invoking the planner to produce a new plan for achieving a

goal, or requesting that the planner modify the plan being executed. The planner plans only

to a certain level of detail, with the executor taking that plan and expanding it at run time by

applying appropriate library actions at lower levels of abstraction.

CPEF significantly extends the ability of Cypress to support the continuous development,

monitoring, and adaptation of plans. CPEF has a Plan Manager agent that controls the overall

life cycle of a plan, spanning plan generation, plan repairs, and plan execution. Thus, the Plan

Manager performs the duties of the executor agent mentioned above, among other things. The

executor agent could be a separate agent that is invoked by the Plan Manager. The creation

and management ofmonitorsis crucial to plan management. CPEF defines a monitor to be

an event-response rule for which detection of the specified event leads to execution of the

corresponding response. The MPA protocols support the planner automatically generating

monitors appropriate to a specific plan, and sending these monitors to the Plan Manager.

6CPEF development was supported by DARPA Contract No. F30602-97-C-0067 as part of the JFACC pro-
gram.

36

Plan Performative Communication Performative
:install Evaluate
:execute
:ping
:pcd Tell
:solution
:failed

Figure 9: Executor Plan and Communication Performatives

6.1.1 Executor Agent

The MPA protocols described here support the role of an agent executing a plan, possibly do-

ing plan repair. This is one of the many functionalities that a plan manager might provide (e.g.,

a plan manager might control planning agents in a manner similar to the PCM.) The currently

allowed combinations of communication and plan performatives in messages handled by the

executor are shown in Figure 9.

An Install message tells the executor to retrieve the plan from the plan server and get it

ready for possible execution. Installation may involve creating and/or installing monitors. An

Execute message tells the executor to being plan execution. Solution and Failed messages will

be received after Revise or Solve requests are sent to the planner. The executor may also send

Create-monitors requests to the planner.

6.2 Planning and Scheduling

One objective of the MPA project is to decompose and integrate planning and scheduling

capabilities within the MPA architecture. Work on integrating planning and scheduling has

proceeded via an SRI subcontract with CMU under the direction of Dr. Steve Smith, aimed

specifically at adapting and integrating scheduling functionality contained in CMU’s OPIS

scheduler [12].7

The interaction of the planner and scheduler provides a good example of multiple agents

cooperatively solving a problem in MPA, so is described in some detail (Section 6.2.3) after

first describing the planner and scheduler agents. For more detail, Section 7.4 describes the

actual messages sent during one of our demonstrations. The use of the scheduler is tied closely

7Steve Smith and Marcel Becker contributed to this section.

37

to the ACP domain used in both IFD-4 and TIE 97-1 — we describe only the limited use of

scheduling currently in MPA.

One of the primary shortcomings of IFD-4 is the inability of the planner to do a capacity

analysis early in the planning process. For example, when there are 75 F-16s and the plan

requires 83 F-16s, the “capacity” of our F-16 assets is inadequate. Part of the MPA decom-

position of the CMU scheduler includes a Scheduler agent for capacity analysis. We have

implemented such an agent and developed its constraint and capacity models. Once we con-

verged on definitions of resource capacity and relevant resource utilization constraints, we

were able to adapt CMU’s capacity analysis knowledge source straightforwardly. We believe

that our demonstration showed significant value added to IFD-4 stemming from the resource

utilization provided by CMU’s scheduler.

6.2.1 Planner Agents: Search Manager and Critic Manager

Currently, the specification for the planner agent assumes a level-by-level plan generation pro-

cess with a critique of the plan after each expansion, as described in Section 5.3. The planner

can expand the plan at each level to some arbitrary extent, as appropriate to the planning tech-

nology being used. The critique can post annotations to the plan server and can cause a failure

of the planning process if unresolvable conflicts are found. The expansion phase is accom-

plished by the Search Manager agent, while the critique of the plan is accomplished by the

Critic Manager agent. Currently, these two agents are pseudoagents within a single planner

agent, although we expect future planning cells will have them as separate agents.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the Search Manager are shown in Figure 10. The first group of Evaluate

messages are used to generate or modify plans. An Init-problem message translates a given

task to the planner’s representation, and initializes the planner for planning (:start-problem is

a synonym for :init-problem). An Expand-plan message causes the plan to be expanded to

the next level, while an Expand-plan-and-critique message causes the plan to be expanded and

also calls the plan critics on the plan. A Generate-plan message causes all levels of a plan to be

generated for a given task (using the planner as the only plan-generation agent and bypassing

PCM control). A Revise message causes an existing plan to be modified as required by a set

of new facts given in the message.

The second group of Evaluate messages provide support functions, such as drawing plans,

and updating and querying information. Define-advice messages specify new advice defi-

38

Plan Performative Communication Performative
:init-problem Evaluate
:expand-plan
:expand-plan-and-critique
:generate-plan
:revise
:define-advice Evaluate
:draw-plan
:create-monitors
:reset-problems
:reset-domain
:ping
:pcd Tell
:advice
:query-advice Ask-All

Figure 10: Search Manager Plan and Communication Performatives

nitions. A Draw-plan message causes the given plan to be drawn in the planner’s GUI. A

Create-monitors message will create a set of monitors for the given plan (see Section 6.1).

The next two Evaluate plan performatives are not normally used but can be used to reset

the agent after unexpected errors. A Reset-problems message causes the planner to redefine

its predefined set of named problems. A Reset-domain message causes the planner to delete

its entire knowledge base about the current planning domain and reload it The Ping and PCD

messages are handled by all agents.

The Advice message tell the planner to activate and/or deactivate already defined pieces of

advice, and the Query-advice message asks the planner to return the names and descriptions

of defined and/or active advice.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the Critic Manager are shown in Figure 11. A Plan-ok? message causes the

planner to apply all critics known to it. A Schedule-ok? message causes the agent to invoke

the scheduler agent of the planning cell. A Temporal-ok? message causes the agent to invoke

the temporal-reasoner agent of the planning cell. A Schedule-ctem? message is specific to

the ACP planning domain and causes the planner to translate the current plan to CTEM, run

CTEM, and translate the results back. The Ping and PCD messages are handled by all agents.

The domain-independent SIPE–2 planning system [14, 15] and the Advisable Planner [8]

39

Plan Performative Communication Performative
:plan-ok? Evaluate
:schedule-ok?
:temporal-ok?
:schedule-ctem?
:ping
:pcd Tell

Figure 11: Critic Manager Plan and Communication Performatives

have been used as the basis for the planner agents in all our demonstrations. SIPE–2 has a

precise notion of a planning level, and plan critics that fit naturally into the above scheme. To

serve as an MPA planner agent, SIPE–2 had to be modularized, separating out its search con-

trol algorithm into the Search Manager pseudoagent, its plan critics algorithm into the Critic

Manager pseudoagent, and its temporal reasoning critic into the Temporal Critic pseudoagent,

which was extended to use any temporal reasoner in the planning cell. In addition, a new

critic was created using the scheduler agent to do capacity analysis and resource allocation.

The Schedule Critic pseudoagent was written to interact with whatever scheduler agent is in

the planning cell.

6.2.2 Scheduler Agent

The use of the scheduler in our current implementation is tied closely to the ACP domain.

This domain has been modeled within OPIS to produce a scheduling agent for the planning

cell. This agent currently provides two types of service to support the planning process:

� Capacity analysis - this service provides a profile of the resource demand for airframe

capacity of different types at various air bases over time, and identifies those periods

where the “availability level” of allocated resources indicates that available assets are

oversubscribed.

� Resource allocation - this service commits specific assets (i.e., airframe capacity of a

particular type from a particular airbase) to specific missions and hence declares these

resources unavailable for any subsequent missions that might be planned.

The currently allowed combinations of communication and plan performatives in mes-

sages handled by the scheduler are shown in Figure 12. Available-resources and Resource-

40

Plan Performative Communication Performative
:available-resources Ask-all
:resource-constraints
:allocate-resources Evaluate
:ping
:pcd Tell
:solution

Figure 12: Scheduler Plan and Communication Performatives

constraints messages are simply “forwarded” on to the plan server using the appropriate view

of the given plan, and the plan server’s answer is returned. The primary invocation of the

scheduler is done with an Allocate-resources message which causes the scheduler to analyze

capacity and allocate resources. The OPIS agent accepts Solution messages, but does nothing

with them, and Ping and PCD messages are handled by all agents.

From a scheduling perspective, a mission (or plan node) generated by the planner in de-

veloping an air campaign plan represents a request for a specific type and quantity of resource

capacity and, at the same time, imposes some constraints and conditions on the utilization of

this capacity. At the level of detail currently considered, the resource capacity required by a

given mission corresponds to some number of airframes of a given type. Specific numbers of

airframes of various types and availability levels are preassigned to different air bases in the

theater. Thus, air bases can be seen as providing airframe (or more specifically sortie)“ca-

pacity” to support missions, and the scheduling problem is to allocate the airframe capacity

available at specific bases to the missions in the plan. A given mission has a specific target

(location), and it is desirable to support missions from nearby air bases. Hence, all air bases

with available resource capacity are not equally preferable.

In theory, the two services provided by this agent could be performed at different levels

of detail and precision, and typically this is the case. Conceptually, capacity analysis is usu-

ally seen as a means of providing look-ahead guidance to a more detailed resource allocation

process. Currently, both capabilities are defined from the same core scheduling procedure

and both are based on the abstract model of air frame capacity we have outlined. This agent

significantly generalizes and improves on the simple conjunctive asset allocation decision pro-

cedure implemented originally in IFD-4, and, even at this high level of modeling abstraction,

provides a more flexible framework for balancing conflicting preferences.

41

6.2.3 Planner-Scheduler Interaction in the Demonstration

The planner and scheduler agents in the current version of MPA are both implemented as

LISP agents. After receiving its first request to allocate resources, the scheduler queries the

Act Plan Server for the available resources in the scenario (given by airbase, airframe type,

arrival day, number of sorties available, and availability level). The same available resources

are used for future requests, unless the optional argument:load-resources t appears

in the :allocate-resources message.

The availability levels for resources are as follows:

� (Deployed dayX) means that the resource will definitely be there on day X. Generally,
this means that the the resource is already at its base at planning time.

� (En-Route dayX) means resource is scheduled to arrive and be available on day X, but
is not at its base at planning time.

� (Requested dayX) means the planner has requested an additional type/number of re-
sources, but resources have not yet been identified to fulfill the request, and perhaps the
request has not even been acknowledged.

� (Hypothetical dayX) means the planner is supplementing available resources as part of
a “what-if” analysis.

� (Overrun dayX) is an auxiliary availability level used to count overallocations. If no
resources from the above availability levels are found, the scheduler starts “assigning”
Overrun resources.

During the planning process, the planner periodically requests that the scheduler perform a

capacity analysis and resource allocation of the resources in the plan. The scheduler is invoked

by a message with the Evaluate communication performative, the :allocate-resources plan

performative, and keyword arguments for the task, plan, and action network. The scheduler

then queries the Act Plan Server for the :resource-constraints view of the named plan, and

tries to allocate the resources required by the plan. Finally, the scheduler responds to the

:allocate-resources request with either:

(:allocate-resources :schedule-ok :task TASK :plan PLAN
:action-network A-NETWORK)

or (:allocate-resources :schedule-failure)

42

If scheduling was successful, the scheduler also posts several annotations and a :resource-

allocations view of the plan’s action network to the Plan Server.

The :resource-constraints plan view specifies all the resources that are used by missions

plan’s action network. The syntax is

(:nodes
((:node-id NAME

:latitude LAT
:longitude LON
:resource-requirements

((MISSION-CATEGORY ((AIRFRAME SORTIES BASE AVAILABILITY)
...)) ...)

:start-time value ;mission start day
:end-time value) ;mission end day + 1

...)
:temporal-constraints (...))

The :resource-requirements slot contains a list of alternative airframe/quantity/base triples in

order of preference for each mission-category. The base is optional. If given, it provides a

preference for where the airframes should be based; otherwise, the nearest base with available

resources is assigned.

The annotations sent by the scheduler include resource-profile, resources-overutilized,

and resources-near-capacity. Resources are considered to be overutilized if they include Re-

quested, Hypothetical, or Overrun resources. Resources are near capacity if they include

En-Route resources, or more than 80 percent of the Deployed resources available at a given

base. These annotations are used by the meta-PA to change the behavior of the planner. If the

refueling resources are overutilized or near capacity, the meta-PA tells the planner to use the

advice :fuel-low in its planning process. This in turn causes the planner to prefer operators

that have lower fueling requirements.

The resource-profile annotation gives an overview of the resource utilization in the overall

plan, specifying the utilization by airframe, day, supply (number of sorties available), demand

(number of sorties required), and the plan nodes that are involved in each demand. The syntax

of this profile is

((AIRFRAME1
(:day DAY :supply SUPPLY :demand DEMAND :nodes NODE-LIST)
(:day DAY :supply SUPPLY :demand DEMAND :nodes NODE-LIST) ...)

(AIRFRAME2 ...) ...)

43

The :resource-allocations plan view is a subset of the :resource-constraints plan view and

provides resource allocations. In the final plan, these resource allocations are used to bind the

resource variables. The minimal format for :resource-allocations is

(:nodes
((:node-id NAME

:resource-requirements
((MISSION-CATEGORY (AIRFRAME SORTIES BASE AVAILABILITY))))))

A more detailed description of the messages used is given in Section 7.4.

7 Single Planning Cell Configuration

We use the termconfigurationto refer to a particular organization of MPA agents and problem-

solving strategies. Here, we describe a single-cell MPA configuration for generating individual

solutions to a planning task, and the next section describes multiple-cell configurations for

generating alternative solutions in parallel.

The initial demonstration was given in September 1996, using the configuration depicted

in Figure 13. The demonstration showed a multiagent planner and scheduler, together with a

temporal reasoning agent, accomplishing planning/scheduling in the Air Campaign Planning

domain. To demonstrate the capabilities of MPA, we showed multiple asynchronous agents

cooperatively generating a plan, the cell manager reconfiguring the planning cell during plan-

ning, agents implemented in different programming languages, and agents running on dif-

ferent machines both locally and over the Internet. The June 1997 demonstration, described

in Section 8, includes multiple instances of the planning cell from the 1996 demonstration,

coordinated by a meta planning-cell manager, producing multiple alternative plans in parallel.

The PCM is a meta-PA that controls the entire process, including initialization of the

planning cell, and specification of a Planning-Cell Descriptor. Planning agents include

GUI/Advice-Manager (not implemented until TIE 97-1), Act Plan Server, Search Manager,

Critic Manager, Schedule Critic, Temporal Critic, Scheduler, and Temporal Reasoner (pro-

vided by OPIS, Tachyon, or both).

The PCM and the Act Plan Server are implemented in PRS, which allows complex real-

time control of the processing of messages. Eventually, the Critic Manager may also be a PRS-

based meta-PA that controls agents for individual critics. Currently, SIPE–2’s critic manager

44

Plan Complete

Plan ok?

PA
Scheduler
(OPIS)

PA
Temporal Reasoner
(OPIS)

PA
Temporal Reasoner
(Tachyon)

or

PA
Search Manager
one-level
(SIPE-2)

PA
Schedule Critic
(new)

 PA
Temporal Constraint Critic
(SIPE-2)

Request
Expand
Next
Level

Meta-PA
Planning-Cell Manager
(PRS)

Planning Cell Designator

Cue:
 (TEST (ready unit1))ACT2

Cue:
Plan One-Level

ACT1Create a plan
Agent

KQML

Message

Annotations

Triggers

Plan Server

Cue: (TEST (ready unit1))ACT2
Cue:
Answer query

ACT1

meta-PA
Critic Manager
(SIPE-2)

Figure 13: MPA Single Cell Configuration. Arrows represent message traffic, except that all
agents communicate with the (Act) Plan Server so those arrows are omitted. The lines without
arrowheads show planning cell composition, and the shaded boxes were not implemented.
Agents insides dashed boxes were implemented within the same image.

is the basis for the Critic Manager, although it has been modified to send messages to temporal

reasoning and scheduling agents. The Tachyon agent is in C and employs a C wrapper, while

the other agents have LISP wrappers.

All agents send messages to and from the Act Plan Server, so arrows for these messages

are omitted. The Act Plan Server supports annotations and triggers which are used to record

features of the plan and notify agents of the posting of those features. The plan is written to the

plan server in the Act formalism, which can be understood by the scheduler and the planner.

The Act Plan Server answers queries about the plan, and handles the annotations and triggers.

The Search Manager is based on SIPE–2’s interactive search routine, which has been ex-

tended to record its backtracking points and other information in the plan server. Another

extension permits starting the search at various backtracking points. The backtracking points

include (lowest level) individual nodes/operators, (mid-level) backtrack to a particular level

without choosing a node, and (highest-level) continue searching (the Search Manager handles

the backtracking). The cell manager can then exercise control at any of these levels as desired.

45

7.1 Control of the Planning Process

The demonstration involves strategy-to-task planning in which the PCM controls the interac-

tion among the various components. The demonstration proceeds through the three phases de-

scribed here. Because of the specialized nature of the task, a special Act (Multiphase Planning

with CTEM) is included in the procedural knowledge base of the PCM to enable generation of

plans that require CTEM invocation.8

Phase I: Targeting Plans The first phase produces the initial targeting plans for achieving

air superiority. For this phase, no scheduler capabilities are used, as there is nothing to sched-

ule in this phase. The plan is generated using the PCM-Expand-and-Critique method with the

single critic :plan-ok?.

Phase II: CTEM Analysis The second phase consists of CTEM scheduling the Phase I

plan. This request is made by sending a :schedule-ctem performative to the cell’s Planner.

Phase III: Support Plan In the final phase, the support missions required for the CTEM-

generated schedule are generated by a second planning process. This portion of the task

requires scheduling, so the PCM modifies the PCD to include “opis” in the role of scheduler

and redistributes the new PCD to all cell agents. The same planning style is used, this time with

both the :plan-ok? and :schedule-ok? critics. In addition, phantom checking is deactivated to

enable more rapid generation of plans.

7.2 Demonstration Scenario

The demonstration generates a two-day plan to achieve air superiority over two unnamed coun-

tries. We extended IFD-4 by adding some Intelligence Surveillance Reconnaissance (ISR)

operators with temporal constraints (the ISR must be sometimes be done several days before

other actions). The PCM invokes the Temporal Reasoner to check these constraints.

The PCM generates the Phase I plan using a planning cell including Tachyon as the Tem-

poral Reasoner but no Scheduler. In Phase II, the PCM sends a message to the Critic Manager

to invoke CTEM, and then reconfigures the planning cell to include OPIS as the Scheduler

and to exclude the Temporal Reasoner (the temporal constraints are already satisfied).

8CTEM is a force requirements estimator and scheduler developed at AEM Services.

46

During generation of the Phase III plan for support missions, OPIS is called periodically

to check the resource allocations (this was done by a simple, greedy algorithm in IFD-4). This

period can be once per node, once per level, or once per plan. We did it once per level in the

demonstration. OPIS may recommend new resource assignments, which causes the Schedule

Critic to modify the plan. OPIS posts annotations describing which resources are overutilized

and which are near capacity. If resource constraints are sufficiently unsatisfiable, OPIS reports

a schedule failure.

The demonstration develops a plan in which fuel tankers are overutilized. When the Sched-

ule Critic notices the Resources-Overutilized annotation posted by the Scheduler for specific

tankers, it inserts a Resource-Class-Overutilized annotation for the class of tankers. The PCM

has posted a trigger on such an annotation and is immediately notified. It responds with two

different tactics to produce a better plan:

1. The PCM sends an :advice plan performative to the Planner, which causes the Planner
to choose options requiring less fuel for the remainder of the plan expansion. This
capability employs SRI’s Advisable Planner. The plan will still have flaws because
resources were already overutilized before the PCM issued the advice.

2. The PCM (after either finishing tactic (1) or aborting the planning process) invokes a
second search for another plan, this time using advice from the start. This produces a
fuel-economic plan in which tankers are not overutilized.

This scenario shows the flexibility provided by the MPA. Separate software systems (OPIS,

Tachyon, and SIPE–2, using KQML and PRSfor support), cooperatively generate a plan. They

are distributed on different machines, implemented in different programming languages, and

combined in multiple ways because of the flexible architecture. The Act Plan Server allows

flexible communication of the plan among agents. The PCM encodes different strategies

for monitoring and controlling the planning process, thus demonstrating dynamic strategy

adaptation in response to partial results. Soon, we will show two different systems providing

the same functionality with OPIS and Tachyon both providing temporal reasoning.

7.3 Demo Visuals

To communicate the multiagent, asynchronous nature of the planning, we use three monitors

with three graphical displays in addition to a dozen or more windows that log message traffic

for each agent. The agents all run in parallel, most on different machines. The three graphical

displays are used as follows, each drawing asynchronously:

47

� The PCM screen shows the PRS graphic trace of the Acts from the meta-PA library as
they are executing.

� The Search Manager screen draws the plan in the planner’s internal representation after
each expansion.

� The Act Plan Server screen draws each new plan in the common plan representation.
Thus, the plan is drawn in two different representations. The Search Manager and Act
Plan Server update their displays simultaneously, because the former sends an :update-
plan message to the Act Plan Server before it sends itself a :draw-plan message.

The extensive textual and graphical tracing in the PCM and the tracing and logging ca-

pabilities of the MPA wrapper provide valuable runtime insights into the operation of the

planning cell. With many agents operating simultaneously, it can be difficult to grasp what the

cell is doing.

7.4 Message Traffic for Planning and Scheduling

This summary of the interactions between the Search Manager, the Act Plan Server, and the

Scheduler in the demonstration can be skipped by those not intending to use MPA. The in-

teraction of planning and scheduling and low-level details of KQML messages are stressed in

this summary.

The PCM sets up the planning cell, including :ping and :pcd messages to the scheduler.

The PCM loops through a cycle of expanding and critiquing the plan until a final plan is

produced. The :expand-plan performative is sent to the Search Manager and the :plan-ok?

performative is sent to the Critic Manager. These agents send plan updates and annotations to

the plan server. When :expand-plan returns(:plan-complete TASK PLAN A-NETWORK) ,

the PCM invokes the Critic Manager by using the :final optional argument. If the plan is

correct, a(:final-plan) annotation is posted to the plan server for this plan. The PCM

has posted a trigger that cause it to be immediately notified of any final plans.

There were three options in MPA for invoking the Scheduler:

1. Have the Scheduler invoked by use of triggers on the appropriate annotation in the Act
Plan Server,

2. Have the Critic Manager or Schedule Manager invoke the Scheduler with a :schedule-
ok? message.

48

3. Have the PCM invoke the Scheduler with a :schedule-ok? message.

We implemented Option 2: the PCM keeps a list, customizable by the user, of the messages

it should send to the Critic Manager. In particular, the PCM sends :plan-ok? and :schedule-

ok? messages to the Critic Manager. The Critic Manager and Schedule Critic in turn send

messages to the Temporal Reasoner and the Scheduler. The messages for some of these lower-

level interactions are explained here (these are not complete KQML messages, only the KQML

performative and the content field).

When the Scheduler is added to the planning cell by the PCM, it queries the Act Plan

Server for the available resources:

(ask-all :content (:query-plan :task TASK :plan PLAN
:action-network A-NETWORK :view :available-resources))

The Search Manager writes the plan to the Act Plan Server after each planning level with

a message of this form:

(tell :content (:update-plan :task TASK :plan PLAN
:action-network A-NETWORK
:view :task-network :content GRAPH-FILE))

The Critic Manager invokes the Temporal Critic (which in turn invokes the Temporal Rea-

soner specified in the PCD):

(evaluate :content (:temporal-ok? :task TASK :plan PLAN
:action-network A-NETWORK))

The Critic Manager invokes the Schedule Critic:

(evaluate :content (:schedule-ok? :task TASK :plan PLAN
:action-network A-NETWORK))

The Schedule Critic in turn invokes the Scheduler:

(evaluate :content (:allocate-resources :task TASK :plan PLAN
:action-network A-NETWORK

{:load-resources t}))

The Scheduler queries the Act Plan Server for the resource requirements:

49

(ask-all :content (:query-plan :task TASK :plan PLAN
:action-network A-NETWORK
:view :resource-constraints))

The Act Plan Server extracts the necessary information from the Act representation of

the plan’s relevant action network, and returns an expression representing the :resource-

constraints view of the plan. The Scheduler asks for available resources only once. After

that, it sets a global variable and does not query the plan server again. To force the Scheduler

to get a new :available-resources view, use the optional argument:load-resources t in

the :allocate-resources message.

The Scheduler posts annotations to the Act Plan Server indicating potential resource prob-

lems:

(insert :content
(:annotation ((sched-complete)

(resources-overutilized :resources RESOURCE-LIST)
(resources-near-capacity :resources RESOURCE-LIST))

:task TASK :plan PLAN :action-network A-NETWORK))

The Schedule Critic checks for the latter two annotations whenever it invokes the Scheduler.

It abstracts from the individual resources mentioned by the Scheduler to the correct resource

classes, and may post annotations of this form:

(insert :content (:annotation
((resource-class-overutilized CLASS-NAME)
(resource-class-near-capacity CLASS-NAME))

:task TASK :plan PLAN :action-network A-NETWORK))

The above abstraction could have been done by the Scheduler, the Act Plan Server, the

PCM, or the Planner. While all these options are reasonable, we choose to do this analysis

in the Planner because all necessary information was in the Planner, and we did not want

the PCM interacting with the plan at the low level of individual resources. The PCM posted

triggers for these annotations, so it is immediately notified when such annotations are posted.

The PCM responds by sending an :advice message to the planner that tells it to activate a new

piece of advice:

(tell :content (:advice :economical-defense :mode :add))

50

This message advises the Planner to use options that require fewer resources (economical-

defense is the name of one of many prespecified pieces of advice). Other possible responses

include backtracking in the case of overutilized resources, and running the Scheduler more

often in the case of resources near capacity.

The Scheduler updates the plan’s action network by posting its resource allocations:

(tell :content (:update-plan :task TASK
:plan PLAN
:action-network A-NETWORK
:view :resource-allocations
:content ALLOCATION-LIST))

The Scheduler replies to the :allocate-resources request with the following:

(reply :content (:schedule-ok? [:schedule-ok | :schedule-failure]))

At the end of the planning process, the Search Manager queries the Act Plan Server for the

:resource-allocations view of the plan’s action network:

(ask-all :content (:query-plan :task TASK
:plan PLAN
:action-network A-NETWORK
:view :resource-allocations))

The Search Manager uses this information to instantiate planning variables (e.g., bases,

resources). A low-level protocol is used by the Temporal Critic to call the Temporal Reasoner.

The Temporal Reasoner merely invokes Tachyon appropriately and returns the output, without

looking at the results:

(evaluate (:temporal-ok? :constraint-file "FILENAME.tcn"
:temporal-output-file "FILENAME.out"))

We chose to use files for communication because IFD-4 Tachyon files could be larger than

a quarter of a megabyte. This requires the Temporal Critic and Temporal Reasoner to have

access to the same file system. MPA has not been optimized for direct communication of large

amounts of data (known improvements exist).

51

8 Multiple Planning Cell Demonstrations

In June 1997, we demonstrated a configuration with two planning cells producing alternative

plans for the same task in parallel. The TIE 97-1 demonstration built on this configuration,

but used a new and more extensive knowledge base of planning operators and advice, and

integrated additional agents.

The meta-PCM controls the entire process, including initialization of planning cells, dis-

tribution of tasks and advice, and reporting of solutions. The planning cells operate exactly as

described for the single planning cell demonstration (Section 7), except that they are invoked

by the meta-PCM instead of the user, and they refuse requests if they are already busy.

8.1 June 1997 Demonstration

This demonstration followed the same sequence as that for the single planning cell demon-

stration, except two alternate plans are constructed in parallel. Figure 14 depicts a multicell

configuration similar to the one used in this demonstration (not all of the shared agents shown

were used). Because the planning cells are given different advice initially, the two plans are

different. The planning cells shared the same Act Plan Server, Temporal Reasoner and Sched-

uler agents. Sharing agents requires fewer running jobs, but is not a requirement. For example,

each planning cell could have had its own plan server.

As with the single planning cell demonstration, described in Section 7, the demonstration

generates two-day plans to achieve air superiority over two unnamed countries. Each PCM

generates a plan in three phases as described in Section 7.1.

This time two different plans are generated. One planning cell is given the ad-

vice :economical-defense by the meta-PCM and the other is given the advice

:F-14D-intercept . (This advice could have been selected by a human user.) The lat-

ter plan is a “gas-guzzling” plan that overutilized tankers, but the former plan is economical in

its use of resources, and does not overutilize tankers. There may still be over-utilized recon-

naissance assets in either plan, depending on the choices that are made and the availability of

those assets.

Section 9.1 describes the message traffic between the meta-PCM and the planning cells.

52

Visualization/Comparison

Agent
KQML

Message

Annotations

Triggers

Plan Server

Cue: (TEST (ready unit1))ACT2
Cue:
Answer query

ACT1

Scheduler

Planning Cell Planning Cell

Meta Planning-Cell Manager

task solved task solved

request
solution
to task

request
solution
to task

Shared Agents

Search
Manager

Critic
Manager

Planning-Cell
Manager

Create a plan

Plan Complete

 Simulator

Temporal Reasoner

Shared Agents

Search
Manager

Critic
Manager

Planning-Cell
Manager

GUI/Advice Manager

Figure 14: MPA Configuration for Multiple Planning Cells. Arrows represent cell-manager
message traffic. The lines without arrowheads show planning cell composition.

8.2 TIE 97-1 Demonstration

The TIE 97-1 demonstration, first shown in November 1997, built directly on the multiple

planning-cell demonstration just described. Significant extensions include the use of a new

and more extensive knowledge base, and the integration of additional agents for plan evalua-

tion, user interaction and plan visualization. Figure 14 depicts the configuration used in this

demonstration.

Several new MPA agents were created. The ARPI Plan Authoring Tool (APAT) from ISX,

a legacy system written in Java, was integrated as an MPA agent. It fills two roles, the first

being the role of GUI/Advice Manager depicted in Figure 14, and the second being the role

of plan visualization (a service also provided in the demonstration by the Visage system from

MAYA). Another new agent was the Air Campaign Simulator (ACS) [1] from the University

of Massachusetts, written in LISP, whose role was to run Monte Carlo simulations of plans,

53

and feed the resulting data to the VISAGE system from MAYA for plan visualization and

evaluation. Both of these agents can read Acts from the Act Plan Server and translate them to

their internal representation.

It took the University of Massachusetts only a day to download MPA and have ACS send-

ing and receiving MPA messages. A few more days were needed for translating from the Act

representation into the ACS representation. (This translation is easy because ACS can ignore

much of the information in an Act.) It took APAT a week to be sending and receiving MPA

messages, primarily because APAT was using the new Java API of KQML and there were bugs

in it. It took several weeks to write and debug the Act translators. This translation was more

difficult because it went both directions, and because APAT needs to translate many specific

relationships, such as the parents of actions and objectives.

This experience indicates that MPA does indeed facilitate the integration of new technolo-

gies. To have a technology like ACS be invoked by APAT and retrieve the plan from the agents

producing it took much longer in IFD-4 (before MPA).

8.2.1 ACP Knowledge Base

We built a new knowledge base (ACP KB) for the air campaign planning domain. The ACP

KB is intended to support air superiority planning, both offensive and defensive, down to ac-

tivity and support mission level. The ACP KB now models target networks. Each network

provides a capability and requires capabilities from other networks in order to function. Net-

work effectiveness is modeled quantitatively, allowing incremental degradation.

The network/capability model is used primarily to model threats to air superiority, though

the model is rich enough to model production networks, lines of communication, and other

networks of targets. The new KB allows more sophisticated and realistic effects-based plan-

ning than was done in IFD-4. For example, it keeps track of target networks (not present in

IFD-4) and calculates degradation of the network as targets are attacked. The ACP KB adds

more realism and provides a more substantive integration with the simulator, the Advisable

Planner, and plan critique and evaluation modules than the old knowledge base.

8.2.2 Demonstration Flow

Here we describe the demonstration flow within MPA, although not all aspects of this scenario

were done in real time during the live demonstration. All aspects of plan generation except

54

the CTEM run are done in real time, but translation of plans to APAT and multiple simulation

runs are not (although one simulation run can be done in real time). The first plan is generated

before the demonstration is begun, and the second and third plans are generated during the

demonstration.

The user interacts with APAT, specifying part of the plan and selecting advice to control

the automatic generation of the air superiority plan. As of September 1998, the user can easily

create new advice using the Mastermind tool9 to generate legal advice definitions which are

then sent to all appropriate agents.

The APAT-authored plan is written as an Act to the plan server. When requested by a

human using APAT’s GUI, APAT sends a message to the meta-PCM with the user-selected

advice requesting a plan to be generated. The meta-PCM invokes a planning cell on the

request, using all the agents of our earlier demonstrations except the temporal reasoner. This

planning process uses both the MPA-generated plan and the APAT-authored plan as input to

CTEM, and then generates a support plan for the CTEM output.

When the post-CTEM plan is finished, APAT retrieves the plan by sending a message to

the plan server, and translates it to APAT’s internal representation. The user can use APAT’s

GUI to inspect the plan. Interacting with APAT, the user elects to simulate the plan, and a

message is sent to invoke ACS on the generated plan. ACS retrieves the plan by sending

a message to the plan server, and generates data by simulating the plan. VISAGE is then

invoked to visualize the results of the simulation.

The user does not like certain aspects of the plan, so decides to generate two different

alternatives, and selects two sets of advice in APAT. A message is sent to the meta-PCM

requesting two plans. Two planning cells are invoked in parallel and two plans are generated.

Again, simulation is invoked, and this time VISAGE can display graphs and charts comparing

all three plans along various dimensions.

9 Agent Interface Specifications

The interface specifications for the MPA agents in the June 1997 demonstration are described

here. These specifications allow the cell manager to interact with other PAs in the cell, and

allow agents to plug and play if they conform to the interface specification of some agent. For

9from Information Sciences Institute (ISI).

55

a new agent, its implementor must determine the message syntax for invoking the agent, write

handlers for such messages, determine the syntax for any messages returned or sent, document

the I/O specifications, including any side effects on the plan server, and ensure that all users

and consumers of the services provided by this agent are aware of (and agree to) the protocols

and documentation.

This section, which also describes wrapper support for certain messages, can be skipped

by those not intending to use MPA. The messages in this section are not complete messages,

only the communication performative and the content field are shown. Certain delimiters are

used below as they are in Backus-Naur Form (BNF). Thej symbol represents ‘or’, the square

brackets are grouping operators forj, and bracesfg designate optional elements.

In the MPA release, there are logs of actual message traffic in subdirectories

beginning with log in /mpa/released/doc/ . For example, to see the mes-

sages during the planning for the TIE 97-1 demonstration, look at the files in

/mpa/released/doc/log-97-123/ . Message traffic for demonstrations using an executor

can be found in/mpa/released/doc/log-cpef/ . There is one file for each agent. Thus,

meta-pcm.text logs the messages of the meta-PCM.

9.1 Meta Planning-Cell Manager Messages

To control the operation of multiple planning cells in parallel and distribute and coordinate

tasks amongst those planning cells a meta planning-cell manager requires the message passing

capabilities described here.

Initially, the meta-PCM is waiting for an incoming planning request in the form of a

Multiple-solve message. In the TIE 97-1 demonstration, requests to the meta-PCM are sent

by APAT, at the request of a human using APAT’s GUI.

invoke: (evaluate :content (:multiple-solve :task TASK
[{:count N} |

{:advice-contexts ADVICE-CONTEXTS}]))
response: (reply :content (:multiple-solve (:ok :id REQUEST-1))) |

(reply :content (:multiple-solve :error ERROR-STRING))

There are also several possible error responses that begin with an :error keyword and a

string explaining why the request was refused.

56

One of :count or :advice-contexts must be specified; if both are given, :count is ignored.

Advice-contexts are generally used as they allow naming of the plans generated, and specifica-

tion of different advice for each plan so that the plans will be different. The argument to :count

is an integer, and the argument to :advice-contexts is a list of sets of advice, or labeled sets of

advice. If labels are provided, the meta-PCM will label the generated plans accordingly. Here

is an example of a request using :advice-contexts:

invoke: (evaluate :content (:multiple-solve :task "AS-A"
:advice-contexts
(("advice1" (:USE-TOMCATS-OVER-CARRIERS :DENY-AIR-PICTURE))

("advice2" (:MASS-VS-SAMS :PREEMPT-ANTISHIP-THREATS)))))
response: (reply :content (:MULTIPLE-SOLVE (:OK :ID REQUEST-2)))

Then the first request arrives (and only on the first request), the meta-PCM first checks the

status of available planning cells by pinging their PCM agents. Every agent should be able to

respond to the :ping performative, which verifies that the agent is alive and well.

This initialization message is sent to each PCM under the control of the meta-PCM:

invoke: (evaluate :content (:ping) ...)
response: (reply :content (:ping :ok))

The :ping performative determines whether an agent is up and running. If the pinged agent

does not respond, the pinging agent times out in KQML. Eventually, we should do something

more sophisticated, such as removing the planning cell that does not respond from the list of

available planning cells.

The meta-PCM then loops through each request. For each request, it loops through the

planning cells, sending the request until some free planning cell accepts it. Alternatively,

the meta-PCM could keep track of which planning cells are free, but the scheme we have

implemented is more robust over resets and restarts of agents.

This is an example of a message sent to one of the PCMs:

invoke: (evaluate :content (:solve :task "AS-A"
:plan "advice1"
:plan-option plan-with-ctem
:requestor "meta-pcm"
:advice (use-tomcats-over-carriers deny-air-picture)
:id request-1))

response: (reply :content (:solve (goal

57

(achieve (plan-with-ctem as-a plan-advice1))))) |
(reply :content (:solve :error

"PCM busy on request from meta-pcm for
(use-advice as-a (use-tomcats-over-carriers deny-air-picture))

Try again later."))

Here, :plan is the label from the entry in :advice-contexts, :advice is the list of advice

from that same entry, and :id is the name generated for the request. If a PRS goal formula is

returned, the meta-PCM is finished with this request until solutions or failures are reported. If

the busy error message is returned, the request must be sent to other PCMs.

Whenever a cell manager finishes a requested task, it sends either a Solution for a Failed

message back to the requestor. The syntax of these messages are described in Section 9.2. The

meta-PCM handles these messages and passes their content on to the appropriate requestor.

Note that Solution messages return the name of the plan server agent which is storing the plan.

Without this argument, the meta-PCM would have to know in advance (i.e., before invoking a

planning cell) what plan server would be used in each planning cell.

The meta-PCM will send some number of the following messages back to its requestor.

Barring errors, there should be one Solution or Failed message for each request accepted.

These are not replies to the initial request, but messages initiated by the meta-PCM. LABEL

is the label from :advice-contexts.

invoke: (tell :content (:solution :task TASK :label LABEL
:plan PLAN :id REQUEST-ID
{:plan-server PLAN-SERVER}))

response: No reply is expected.

invoke: (tell :content (:subset-accepted :task TASK :count N
:id REQUEST-ID))

response: No reply is expected.

invoke: (tell :content (:busy :task TASK :error ERROR
:id REQUEST-ID))

response: No reply is expected.

invoke: (tell :content (:failed :task TASK :plan PLAN
:label LABEL :error ERROR
:id REQUEST-ID))

response: No reply is expected.

58

Finally, the meta-PCM forards Define-advice messages to all running planning-cell man-

agers. The syntax is given in Section 9.3. The meta-PCM distributes Define-advice messages

to all PCMs and waits for them to return. (KQML will return immediately if a PCM cannot

be contacted.) The meta-PCM returns the value from the first successful reply. If there are no

successful replies, it returns the first error reply, else NIL.

9.2 Planning-Cell Manager Messages

The cell manager (PCM) is invoked either by the user posting a goal in PRS (through the

GUI), or by some agent sending a Solve message, as the meta-PCM does. The PCM responds

immediately with a reply indicating it is busy or giving the PRS goal that was posted, indi-

cating acceptance of the request. An example of a Solve message and the reply were given in

Section 9.1. Here is the syntax for a Solve message:

invoke: (evaluate :content (:solve :task TASK :plan PLAN
{:plan-option PLAN-OPTION}

:requestor AGENT-ID
:advice ADVICE-LIST
:id REQUEST-ID))

response: (reply :content (:solve GOAL-WFF)) |
(reply :content (:solve :error ERROR-STRING))

Here, PLAN is a label provided by the requestor (in the meta-PCM, this is taken from the

entry in :advice-contexts), and ADVICE-LIST is a list of advice. REQUEST-ID is a name

for the request provided by the requestor. The requestor is included in the message because

it may not always be the sender of the message, e.g., it may have been requested by a hu-

man user interacting with the meta-PCM. The optional:plan-option argument used for

our demonstrations wasplan-with-ctem which invokes Acts in the PCM for planning

using CTEM, which differs from the normal planning process. Examples of GOAL-WFF and

ERROR-STRING were given in Section 9.1.

When establishing a planning cell, the cell manager sends two messages to all agents.

Every agent should be able to respond to the :ping performative, which verifies that the agent

is alive and well, and to store the relevant PCD upon receipt of a :pcd performative.

invoke: (tell :content (:pcd ((ROLE AGENT) ... (ROLE AGENT))))
response: No reply is expected.

59

The :ping performative is described in Section 9.1. The :pcd performative is used to in-

form all agents in the cell of the current PCD. The LISP wrapper for MPA that is avail-

able to all LISP-based agents defines handlers for both :ping and :pcd. The function

mpa:agent-for-role is used by all cell agents to send messages using the PCD as fol-

lows: (mpa:send-msg msg (mpa:agent-for-role :plan-server))

The PCM announces a solution with a message of the following form, sent to the agent

requesting the solution.

invoke: (tell :content (:solution :task TASK :plan PLAN
{:plan-server PLAN-SERVER}
:id REQUEST-ID))

response: No reply is expected.

where the optional:plan-server argument is given when the responding cell manager

and the meta-PCM are not using the same plan server agent. The value of this argument is the

name of the plan server agent from which the plan can be retrieved. Solution messages (and

Failed messages) fill the :id field with the value in the :id field of the request. Note that the

planner may send Solution messages with additional keyword arguments (see Section 9.7).

Alternatively, the PCM announces a failure with a message of the following form, sent to

the agent requesting the solution.

invoke: (tell :content (:failed :task TASK :plan PLAN
:id REQUEST-ID))

response: No reply is expected.

In addition, the PCM handles Advice and Define-advice messages which it forwards to

the planner. Advice messages name predefined advice and the issued advice is recorded in

the PRS database. The syntax for Define-advice messages is given in Section 9.3. (The

PCM may change any Error communication performative in a reply to Reply communication

performative, but the :error keyword will remain intact.)

invoke: (tell :content (:advice ADVICE {:mode MODE}))
response: No reply is expected.

The optional argument:mode can be set to either:add or :replace , to indicate

whether whether the advice should be added to the current set of advice, or should replace

it (the default is:add). ADVICE is either a symbol or a list of symbols.

60

9.3 Planner Messages: Search Manager

As described in Section 5.3.1, the Search Manager generates plans level by level when used

with the PCM. For each level, a more detailed plan is first generated, then critiqued. This is

fairly general, but other planners may require lower-level control of the planning process.

Alternatively, the Generate-plan message can be used to expand all levels and generate a

final plan. In this case, the plan is generated completely inside the planner without using other

agents (bypassing PCM control).

Any of the messages described below can return an error reply, which may also have an

:error keyword and a string explaining why the request was refused. For example, all messages

can generate replies of this form:

error response: (error :content (P-PERF :unrecognized-plan
:error ERROR-STRING))

Some messages (e.g., Generate-plan and Init-problem) can also return an :unrecognized-

task error. The :unrecognized-plan error may indicate problems either with the task, plan, or

action network, and the value of :error will give a more detailed explanation.

The Search Manager accepts the following messages. Only non-error replies are docu-

mented below. In the MPA release, there are logs of actual message traffic in subdirectories

beginning withlog in /mpa/released/doc/ . The first message below causes a plan to be

drawn on the GUI of the planner.

invoke: (evaluate :content (:draw-plan :task TASK :plan PLAN
:action-network A-NETWORK))

response: (reply :content (:draw-plan :plan-drawn))

9.3.1 Invoking Planning on a Task

Planning for a new task can be invoked with any of these messages: Generate-plan and Init-

problem. An Init-problem message is used to initialize planning for distributed, multiagent

plan generation, and causes the planner to create an initial action network to represent a task.

invoke: (evaluate :content (:init-problem {:task TASK :plan PLAN
:act ASCII-ACT}))

response: (reply :content (:init-problem (TASK PLAN A-NETWORK)))
:start-problem is a synonym for :init-problem

61

All of the invocation messages mentioned above take the keywords shown above and use

the same algorithm for determining which task to solve. In all cases, the:plan argument

provides a name to use for the generated plan, and the task to solve is specified by trying these

options in order until one finds the task:

1. If the :act argument is given, it’s value is the ASCII Act for the task (in either string
or s-expression form, see example in next section).

2. If the :task argument is given, the task is retrieved from the plan server with a
Query-task message. Querying the plan server for the task can be disabled by setting
sipe::get-task-from-plan-server to NIL.

3. If the:task argument is given, the task is any problem defined in the planner with that
task name.

4. If neither the:task or :act argument is given, the task is the first unsolved problem
found in the planner.

5. Finally, an :unrecognized-task error is returned.

9.3.2 Customizations

The Search Manager can be customized in a number of ways. We describe these first, as

the messages to invoke planning allow specification of some of the customizations described

here. When messages to the planner selects a customization, the new selection affects only the

processing of this one message.

The default values described are for MPA when no domain is loaded. Many of our demon-

strations (such as TIE 97-1) change these defaults when they are loaded. For example, in

TIE 97-1, the plans are usually drawn after each expansion, and both the :ascii-filename and

:task-network views are sent to the plan server for all levels of the final plan.

The planner generally sends an action network to the plan server for each level of a level-

by-level expansion. For a Generate-plan request, nothing is sent to the plan server is complete,

and then the options below control whether the final action network or all action networks are

sent.

� The variablempa:*plan-to-server* serves two purposes: when it is nil, it disables
all sending of information to the plan server; else, it is the name of a view and the
planner sends that view of the plan to the plan server server. The default value is :task-
network, which has the advantages of persistently storing the action networks, and of

62

permitting the drawing of the action networks on the Act Plan Server GUI. Here are the
allowable values:

– :TASK-NETWORK – sends the :task-network view.

– :ASCII – sends the :ascii view.

– :ASCII-FILENAME – sends both the :task-network and :ascii-filename views.
(since both must be computed anyway, and the plan server must be on the same
file system as the planner)

– :TASK-NETWORK-AND-ASCII – sends both the :task-network and :ascii views,
but not the :ascii-filename view.

– NIL – do no translation, never contact the plan server.

� When the plan is completed, there is an option for sending all the action net-
works of a plan to the plan server as a single plan-level update. The variable
mpa:*all-levels-to-server* is the name of a view to use for such an update.
The allowable values are the same as formpa:*plan-to-server* above. The default
value is nil, which means no all-levels view is sent, but only the view for the final action
network (as determined bympa:*plan-to-server*). The final action network is al-
ways sent in a level-by-level expansion, but for a Generate-plan request, it is sent only
if mpa:*all-levels-to-server* is nil.

� The variablempa:*monitors-to-server* determines how the monitors are sent to
the plan server after a final plan is found. A value of nil disables sending monitors (as
does a NIL value formpa:*plan-to-server*). The other allowable values are the
two views for monitors, :monitors and :monitor-filename. If monitors are not sent to
the plan server, the filename of the monitors is sent in the :monitor-filename argument
of Install and Solution messages. By default, the :monitor-filename argument is also
included even when the plan server is being used, but this can be disabled by setting the
variablesipe::monitor-filename-with-notify to NIL.

� If mpa:*draw-plan-after-reply* is T, the Search Manager will draw each action
network it generates in a level-by-level expansion, or the final action network for a
Generate-plan request. The default is nil, because drawing can slow down the planning
process for large plans. The Search Manager draws a plan by sending a :draw-plan
message to itself just before replying to an Expand-plan, Expand-plan-and-critique or
Generate-plan message. This technique allows the requestor to receive a reply and the
plan to be put in the plan server before drawing. Thus, other agents can be processing
the plan in parallel with the drawing process.

� Querying the plan server for the task can be disabled by setting the variable
sipe::get-task-from-plan-server to NIL. In this case, the task name should
be internally defined in the planner as a problem to be solved.

63

9.3.3 Plan Expansion and Critique

The Generate-plan message causes all levels of a plan to be generated for a given task, using

only the planner. This message is not used in the MPA demonstrations, but provides agent-

based access to the capabilities of our planner, and is used by SRI’s CPEF demonstrations. An

example of a Generate-plan request is given at the end of this section.

invoke: (evaluate :content ’(:generate-plan
:task TASK :plan PLAN

{:act ASCII-ACT}
{:facts FACTS}
{:create-monitors BOOLEAN}
{:plan-to-server VIEW}
{:all-levels-to-server VIEW}
{:id ID}))

response: (reply :content (:generate-plan :ok))

The requestor may not wish to wait for a reply to a Generate-plan message or the Revise

message described below. Therefore, the reply for these messages is an :ok message whenever

the task is valid. Like the PCM, the planner announces solutions and failures to its requestor

with Solution and Failed messages, respectively. The syntax for the Failed message is given

in Section 9.2. However, the Solution message returned by the planner has some additional

fields (beyond those shown in Section 9.2) to support plan repair by an executor. The planner’s

Solution message is described in Section 9.7.

The arguments to Generate-plan are:

:task :plan :act used as described in Section 9.3.1.

:facts specifies a list of predicates to be changed in the world before plan generation. The

value is NIL (the default) or a list of predicates (e.g.,((on c d) (not (on a

b)))).

:create-monitors is a boolean. If T, the planner creates a set of monitors for the generated

plan, just as if a Create-monitors message had been sent. In our current planner agent,

the CPEF system must be loaded to use this option.

:plan-to-server determines what view, if any, is sent to the plan server. The value will over-

ride the value ofmpa:*plan-to-server* during the processing of this message. If

this keyword is omitted, the default value ofmpa:*plan-to-server* is used.

64

:all-levels-to-server determines if all action networks are sent to the plan server (and in what

view). The value will override the value ofmpa:*all-levels-to-server* dur-

ing the processing of this message. If this keyword is omitted, the default value of

mpa:*all-levels-to-server* is used. If bothmpa:*all-levels-to-server*

andmpa:*plan-to-server* are non-nil, then only the all-levels view is sent, else

the final action network is sent as directed bympa:*plan-to-server* .

:id is used for identification in Solution and Failed messages.

Here is an example of a Generate-plan message sent to the planner:

(evaluate :content (:generate-plan :task "task-gain-oas"
:plan "plan-gain-oas"
:act (solve-request-110

(environment (properties (class problem)))
(plot (goal-1 (achieve (breach-iads d+0 low)))))

:plan-to-server :ascii-filename
:id R110))

The next two messages cause the planner to expand an existing action network to the next

level of detail. They are used by the PCM in our demonstrations.

invoke: (evaluate :content (:expand-plan :task TASK :plan PLAN
:action-network A-NETWORK

{:plan-to-server VIEW}
{:node n :opr o :level D}))

response: (reply :content (:expand-plan
[(:level-complete TASK PLAN A-NETWORK) |

(:no-expansion TASK PLAN A-NETWORK) |
(:no-expansion) |
(:plan-complete TASK PLAN A-NETWORK) |
(:plan-failure)]))

invoke: (evaluate :content ’(:expand-plan-and-critique
:task TASK :plan PLAN
:action-network A-NETWORK

{:plan-to-server VIEW}
{:all-levels-to-server VIEW}
{:node n :opr o :level D}))

response: (reply :content (:expand-plan-and-critique
[(:level-complete TASK PLAN A-NETWORK) |

(:no-expansion TASK PLAN A-NETWORK) |

65

(:no-expansion) |
(:final-plan TASK PLAN A-NETWORK) |
(:plan-failure)]))

The arguments to these two messages are:

:task :plan :action-network are used to determine which action network to expand.

:plan-to-server determines what view, if any, is sent to the plan server of the action network

that is generated. The value will override the value ofmpa:*plan-to-server* during

the processing of this message. Generally, this keyword is omitted, and the default value

of mpa:*plan-to-server* is used.

:all-levels-to-server only has an effect if a final plan is generated. The value will

override the value ofmpa:*all-levels-to-server* during the processing of

this message. Generally, this keyword is omitted, and the default value of

mpa:*all-levels-to-server* is used.

:node :opr :level are used invoking backtracking. This capability has not been tested.

The returned keywords of the plan performatives :expand-plan and :expand-plan-and-

critique are posted as annotations in the plan server, and have the following meanings:

(:plan-failure) indicates no action network was found and no backtracking points exist.

(:no-expansion TASK PLAN A-NETWORK) indicates no action network was found but

backtracking points exist. The A-NETWORK is the input action network name, unless

it was not recognized as an action network, in which case (:no-expansion) is returned.

(:level-complete TASK PLAN A-NETWORK) indicates there is a action network at the

next level. (In one case the action network will be the same action network level as

input — only for :expand-plan-and-critique and only when the input action network had

all goals solved, but the critics found a problem and modified the action network.)

(:plan-complete TASK PLAN A-NETWORK) indicates there is a action network with all

goals solved, although it may contain flaws. (This is generally the same action network

level as input for :expand-plan, but it could be a new action network level for :expand-

plan-and-critique.)

66

(:final-plan TASK PLAN A-NETWORK) indicates there is an action network with all

goals solved, and that it is correct. :Final-plan is returned only from :expand-plan-

and-critique and may be a new action network level or the same level as input.

9.3.4 Plan Repair

A Revise message causes an existing plan to be modified as required by a set of new facts

given in the message. In our current planner agent, the Revise message assumes the CPEF

system is loaded and there is an executor agent in the PCD.

invoke: (evaluate :content ’(:revise
:task TASK :plan PLAN
:action-network A-NETWORK
{:facts FACTS}
{:replace-world BOOLEAN}
{:execution-front NODE-LIST}
{:node NODE}
{:reinstantiate BOOLEAN}
{:force-replan BOOLEAN}
{:replan-goal EXPRESSION}
{:id REQUEST-ID}))

response: (reply :content (:revise :ok))

The response to a Revise message is the same as the response to a Generate-plan message,

as described above, including Solution and Failed messages that are sent. An example of a

Revise request is given in Section 9.7. Here we describe the optional arguments to Revise.

:facts specified facts that are now true in the world. The value can either be a list of predicates

(e.g.,((on c d) (not (on a b)))), or the name of a file which contains a set of

predicate entries.

:replace-world is a boolean. If T, the :facts argument completely replaces the existing world

description. If NIL (the default), the new facts are appended to the existing world de-

scription.

:execution-front is a list of node names in the given action network that have been executed

but whose immediate successors have not been executed (i.e., the last node executed on

each parallel thread of activity). Alternatively, the value can be NIL or:none . The

latter indicates that execution has not yet begun.

67

:node is the name of a node that failed in the given action network. This failed node should

be in the execution front or an unexecuted node.

:id is used for identification in Solution and Failed messages.

The current planner invokes a specialized plan repair algorithm in the special case where

the plan has not been executed (execution-front is :NONE), as the planner treats this case more

like initial plan generation than like plan repair. In this case, the remaining arguments below

are ignored as are the :node and :replace-world arguments. (The current Search Manager

assumes :replace-world is NIL in this special case.)

The remaining three arguments are used to give direction and advice to the plan repair

process. Their values are specialized to the current planner being used (SIPE–2), and may

have to be modified for other planners.

:reinstantiate is a boolean. The default is T, but the default can be changed for a given

domain. If T, the planner tries to reinstantiate planning variables to reestablish failed

preconditions and protected conditions.

:force-replan is a boolean, the default is NIL. If T, the planner must produce a different plan

that eliminates the failed node. In SIPE–2, the failed node should be executed or a

precondition or process node. A different plan is produced even when there are no new

facts and nothing is wrong with the current plan. :Force-replan is useful when a plan

fails for unknown reasons, or a human requests a different plan for some particular goal.

:replan-goal can have many different values, and is used to direct or advise the plan repair.

Values can vary from nodes to replan, to goal predicates to replan, to names of planner

algorithms for selecting goals to replan. Details are given in the SIPE–2 manual [16]

(see*select-replan-goal*).

During plan revision, nodes that are in parallel with the failed node are not changed, since

they may be executing while the plan is being modified. Nodes that are after the failed node

can be removed and/or replaced during plan revision. It may be desirable to have the executor

and planner communicate about more complex schemes for determining which nodes may be

executing and which can be replaced.

68

9.3.5 Advice

The Advice message was described in Section 9.2. The Define-advice message is used

to allow users to dynamically create advice using ISI’s Mastermind tool. Mastermind al-

lows the user to easily generate legal advice definitions from an advice grammar. The

value of :source is a Mastermind parse tree that can either be in a file, string, or list, de-

pending on the value of :source-type. If :activate is non-nil, then the advice is defined

and selected, else it is just defined. For the detailed syntax the parse tree, see the file

sipe/released/lisp/ap-mastermind.lisp . The value returned is a list of the names

of the newly defined advice.

invoke: (evaluate :content (:define-advice
:source PARSE-TREE
:source-type {:FILE | :STRING | :LIST}
:activate BOOLEAN))

response: (reply :content (:define-advice (MM-ADVICE-1 ...)))
error response: (reply :content (:define-advice nil :error STRING))

invoke: (tell :content (:advice ADVICE {:mode MODE})
response: No reply is expected. (return :ok message if requested)
error response: (error :content (:advice

[:not-found | :some } :error ERROR-STRING))

invoke: (ask-all :content (:query-advice {:active BOOLEAN})
response: (reply :content (:query-advice { NIL | ADVICE-TUPLES]))

The Query-advice message asks the planner to return the names and descriptions of defined

and/or active advice. If :active is nil (the default), all defined advice is returned, with active

advice noted. If :active is non-nil, then only the active advice is returned. The returned value

is a list of advice-tuples in both cases. An advice tuple is a list with four elements: a symbol

naming the advice, a string describing the advice, the keyword :active, and a boolean.

An example return value for Query-advice is:

(:BREACH-AT-TWO-PLACES "Breach IADS at two different sectors"
:ACTIVE NIL)

(:MASS-VS-AIRBASES "When attacking airbases,
mass forces against one target type" :ACTIVE T)

69

9.3.6 Miscellaneous

A Create-monitors message will create a set of monitors for the given plan (see Section 6.1). In

our current planner agent, the Create-monitors message assumes the CPEF system is loaded.

create-monitors
invoke: (evaluate :content (:create-monitors :task TASK :plan PLAN

:action-network A-NETWORK))
response: (reply :content (:create-monitors FILENAME))

The next two messages can be used to advise or reset the planner. A Reset-problems message

causes the planner to redefine its predefined set of named problems. A Reset-domain message

causes the planner to delete its entire knowledge base about the current planning domain and

reload it.

invoke: (evaluate :content ’(:reset-problems))
response: No reply is expected. (return :ok message if requested)

invoke: (evaluate :content ’(:reset-domain))
response: No reply is expected. (return :ok message if requested)

9.4 Planner Messages: Critic Manager

Currently, the Critic Manager invokes most critics internally, but we plan to specify lower-level

interfaces for individual plan critics. We have already done this for the Temporal Reasoner and

Scheduler that were used in our demonstration. Error replies are the same as for the Search

Manager (see Section 9.3).

The Critic Manager accepts the following messages:

invoke: (evaluate :content ’(:plan-ok? :task TASK :plan PLAN
:action-network A-NETWORK

{:plan-to-server VIEW}
{:all-levels-to-server VIEW}
{:final F :interact I }))

response: (error :content (:plan-ok?
[:plan-ok |

:plan-rejected {:error ERROR-STRING} |
:final-plan]))

invoke: (evaluate :content ’(:schedule-ctem

70

:task TASK :plan PLAN
:action-network A-NETWORK))

response: (reply :content (:schedule-ctem (TASK PLAN A-NETWORK)))

The values of :plan-to-server and :all-levels-to-server are as described for Generate-plan, but

only have an effect when :final is T and :final-plan is returned. The returned keywords for

:plan-ok? are posted as annotations in the plan server.

The plan identifiers returned by :schedule-ctem denote a planning problem for support

missions and should be sent to the Planner in an :init-problem message.

9.5 Schedule Critic Messages

The Schedule Critic can be invoked by either the Critic Manager or the cell manager. Error

replies are the same as for the Search Manager (see Section 9.3). The Schedule Critic accepts

the following messages:

invoke: (evaluate :content ’(:schedule-ok?
:task TASK :plan PLAN
:action-network A-NETWORK))

response: (reply :content (:schedule-ok?
[:schedule-ok | :schedule-failure]) ...)

Before the schedule critic invokes the Scheduler, the Planner should have sent the appropriate

:update-plan message to the plan server to post the action network. The Scheduler retrieves

this information by querying the the plan server after receiving the request.

Before replying, the Scheduler may also send annotations and plan updates to the plan

server. In our demonstration, it sends an :update-plan message to define the :resource-

allocations view of the action network, and posts Sched-Complete, Resources-Overutilized,

and Resources-Near-Capacity annotations in the plan server.

9.6 Temporal Critic Messages

The Temporal Critic can be invoked by either the Critic Manager or the cell manager. It

accepts the following messages:

71

invoke: (evaluate :content ’(:temporal-ok?
:task TASK :plan PLAN
:action-network A-NETWORK))

response: (reply :content (:temporal-ok? [:temporal-ok |
:temporal-failure |
:error ERROR-STRING |
:unrecognized-plan]))

The Temporal Critic gets the action network name and extracts all the temporal constraints

from the action network and sends them in a separate message to the Temporal Reasoner. The

Temporal Critic then processes the values returned by the Temporal Reasoner and updates the

plan server with any updated time windows.

The following low-level protocol is used by the Temporal Critic to call the Temporal Rea-

soner. The Temporal Reasoner merely invokes Tachyon appropriately and returns the output,

without looking at the results.

invoke: (evaluate (:temporal-ok? :constraint-file "FILENAME.tcn"
:temporal-output-file "FILENAME.out"))

response: (reply :content (:temporal-ok? :temporal :file OUTFILE))
response: (error :content (:temporal-ok? :temporal

:error ERROR-STRING))

We chose to use files for communication because IFD-4 Tachyon files could be larger than

a quarter of a megabyte. This requires the Temporal Critic and Temporal Reasoner to have

access to the same file system. Otherwise, it is trivial to include the contents of the file in the

contents of the message, although the messages could get large.

9.7 Executor Messages

As described in Section 6.1, the executor executes (or simulates execution of) a plan, while

constantly monitoring the world and taking actions in response to new goals and events. The

following messages are a first attempt at supporting this capability. We expect this set of

messages to expand significantly.

The executor can be told to ready a plan for execution with the Install message and begin

execution of an already installed plan with the Execute message.

72

invoke: (evaluate :content ’(:install
:task TASK :plan PLAN
:action-network A-NETWORK
{:task-network FILENAME}
{:monitor-filename FILENAME}))

response: (reply :content (:install :ok))

Installation requires the executor to retrieve the plan from the plan server in whatever view

the executor prefers. If the executor wants to use monitors created by the planner, it must

also retrieve the :monitors view of the plan from the plan server. If the :monitor-filename

argument is:none , then the executor does not need to retrieve the monitors from the plan

server. The :task-network and :monitor-filename optional keywords are provided to support

the option of not using the plan server when both the planner and executor have access to the

same file system. If the :task-network argument is given, it is the :task-network view of the

plan. Similarly, the :monitor-filename argument provides the :monitor-filename view.

Here is an example of an actual Install message sent to the SRI Executor:

(evaluate :content (:install :task "sipe-task":plan "sipe-plan"
:action-network SOCAP1-6-PLAN-1
:task-network "/cypress/act-socap1-6-plan-1.graph"
:monitor-filename "/cypress/monitors-act-socap1-6-plan-1.graph"))

Like the Install message, the Execute message allows the :task-network view of the plan as

an optional argument. The executor may not even need this information if it was stored during

plan installation.

invoke: (evaluate :content ’(:execute
:task TASK :plan PLAN
:action-network A-NETWORK
{:task-network FILENAME}))

response: (reply :content (:execute :ok))

The executor may do many things in response to new events and goals. These responses

can include, among other things, the sending of Revise and Generate-Plan messages (described

in Section 9.3) to the planner. Here is an example of a Revise message sent by the executor to

the planner:

73

(evaluate :content (:revise :task "task-gain-oas"
:plan "plan-gain-oas"
:action-network REQUEST-110-15-PLAN-1
:node P3640 :execution-front (C3758 P3640)
:facts "db-failure-22522.lisp"
:replace-world NIL :id "FAILURE-22522"))

The executor need not wait for a reply, as it is always an :ok message if the request is under-

stood. Sometime later, the executor will receive Solution or Failed messages from the planner,

which fill the :id field with the value in the :id field of the request. The syntax for the Failed

message is the same as that for Failed messages from the PCM (see Section 9.2). However,

the Solution message returned by the planner has some additional fields that support the use

of solutions during plan repair by the executor.

invoke: (tell :content (:solution :task TASK :plan PLAN
{:plan-server PLAN-SERVER}
:id REQUEST-ID
:action-network A-NETWORK
{:graph FILE}
{:monitor-graph FILE}
{:node-map node-map}))

response: No reply is expected.

Here is an example of the Solution message received for the above Revise message.

invoke: (tell :content (:solution :task "task-gain-oas"
:plan "plan-gain-oas"
:action-network REQUEST-110-FAILURE-22522
:graph NIL
:monitor-graph "monitors-request-110-failure-22522.graph"
:node-map ((P3640 C4463) (C3758 C4463) (P3636 C4463))
:id "FAILURE-22522"))

response: No reply is expected.

9.8 Plan Server Messages

All types of plan server messages use task, plan, and action-network names. As of MPA

version 1.3, these names can be either strings or symbols without string quotes (although

these two are distinct), and both are case insensitive. Thus,"FOO" andFOOare distinct and

do not name the same plan, while"FOO" and"foo" do name the same plan.

74

In general, plan server updates should not expect a response (only queries require a re-

sponse). However, the plan server always replies if requested to do so. The plan server returns

an :ok message if a reply is requested when none is expected.

9.8.1 Task Updates

Before a plan expansion is initiated, the task name and the plan name are posted to the plan

server. The plan server creates the necessary structures required to represent them. If the task

already exists the plan server creates the necessary plan structure and links it to the task.

invoke: (tell :content (:update-task
:task TASK
{:view VIEW-NAME :content VIEW

:plan PLAN
:parent PLAN :subplans (PLAN ...)
:assumptions FREE :context FREE
:plan-assumptions FREE}))

response: No reply is expected. (return :ok message if requested)

The :task keyword is required, the others are optional. The :view and :content keywords,

which should be used together, can be used to specify an Act representing the objectives

(goals) of the task.

Whenever the :plan keyword is used, a new plan record for this task is created. If a plan

record with than name already exists, the new plan record is pushed onto the task-plans, ef-

fectively masking the existence of the old plan by that name (it can be recovered by deleting

the new plan). The :parent and :subplans keywords can be used to specify a subplan/parent

relationship between the plan being created and an existing plan. For every parent link given,

the corresponding subplan link is automatically filled in; similarly, parent links are generated

from subplan links.

The final three keywords are there to allow additional information to be specified. Cur-

rently, their values are simply free text that is returned upon a query. These three keywords

are not used in the current MPA release, but we expect to develop specifications for them in

the future.

Two examples of :update-task messages are given below. The first creates task and plan

records without specifying the objectives of the task. The second message gives an Act for the

objectives, and will overwrite the Act stored in any existing task record for that task (or create

a new task record if no such record exists).

75

invoke: (tell :content (:update-task :task "fennario-task"
:plan "terrapin-1"))

response: No reply is expected. (return :ok message if requested)

invoke: (tell :content (:update-task :task "fennario-task"
:view :ascii
:content (Meet-Peggy

(plot (g1 (achieve (meet peggy fennario)))))))
response: No reply is expected. (return :ok message if requested)

9.8.2 Plan Updates

An Update-plan message can apply to either a plan or action network, and is used to create

instances of those objects, or new views of action networks. The views currently supported

in the Act Plan Server for Update-plan are the same as those supported for Query-plan (see

Figure 5), except that :available-resources is not supported (it is assumed the plan server com-

putes this from its database). If no view is given, Update-plan assumes :task-network as the

default.

An update on plans is indicated by the :action-network keyword being omitted or having

a value ofnil or :all (for plan updates, these two are equivalent). In this case, the views

for plans shown in Figure 5 are applicable. Otherwise, the request is an update on an action

network, where the :action-network keyword gives the name of a known action network, a

new action network, or the special value :last, which refers to the last action network defined

for the given task and plan. The views for action networks shown in Figure 5 are applicable.

During planning, at the end of each level, the action network is posted to the plan server.

This can be done in either ASCII or Grasper form. A plan update uses the following perfor-

matives and keywords:

invoke: (tell :content (:update-plan :task TASK :plan PLAN
{:action-network A-NETWORK}
{:view VIEW-NAME}
:content VIEW))

response: No reply is expected. (return :ok message if requested)

Where :content gives the value for the given VIEW-NAME. Examples:
:task-network (VIEW is a string for a Grasper filename)
:ascii (VIEW is a string or s-expression

for an ASCII Act)
:resource-allocations (VIEW is an s-expression for resource

76

allocations, as specified below)

The :update-plan performative causes the plan server to load in the Grasper-file, parse the

ASCII Act, or store the given view. The plan server associates the Act with the named task,

plan, and action network, as appropriate. If an ASCII Act contains strings in its properties,

then the Act must be specified without string quotes (as an s-expression).

The following example messages show the specification of two action networks. The task

and plan have already been created by the example :update-task message shown above. The

action networks are specified with different views. The first uses the :ascii view and provides

an Act in ASCII representation (with strings in properties). The second action network uses

the :task-network view. Any action-network name specified in the :action-network keyword

must be the Act name specified in the ASCII Act, or an Act that is present in the given :task-

network file.

invoke: (tell :content (:update-plan
:task "fennario-task"
:plan "terrapin-1"
:action-network "level-3"
:view :ascii
:content

(level-3
(environment

(cue (achieve (meet peggy fenarrio)))
(preconditions)
(properties (authoring-system sipe-2) (class plan)))

(plot
(a2 (type parallel) (parent c8) (achieve (go-to fennario))

(orderings (next a3))
(properties ((action-type "Move with rowboat"))))

(a3 (type parallel) (parent c1) (achieve (find peggy)))))))
response: No reply is expected. (return :ok message if requested)

invoke: (tell :content (:update-plan
:task "fennario-task"
:plan "terrapin-1"
:action-network "level-1"
:view :task-network
:content "/homedir/foo/level-1.graph"))

response: No reply is expected. (return :ok message if requested)

77

9.8.3 Deletions

The performatives and keywords for deleting an action network, plan or task from the plan

server are described here. With the Delete communication performative, :update-task and

:update-plan can be used interchangeably as the plan performative — the various combinations

are chosen by the keyword arguments.

To delete all tasks or a specified task (plus all descendant plans and action networks), use

the following message:

invoke: (delete :content (:update-task :task [TASK | :all]))
response: No reply is expected. (return :ok message if requested)

If :task is :all then all the tasks known to the plan server are deleted. This command is

useful to free space for garbage collection and to prevent the plan server from confusing a new

version of a plan with some previous version. Tasks can be deleted programmatically with

(prs:delete-ps :task :all). Before sending a message to delete tasks to the plan

server, an agent should consider asking a user for confirmation.

To delete a specific plan or all plans in a specified task, use the following message:

invoke: (delete :content (:update-plan :task TASK
:plan [PLAN | :all]))

response: No reply is expected. (return :ok message if requested)

To delete a specified action network or all action networks in a specified plan, use the

following message:

invoke: (delete :content (:update-plan :task TASK
:plan PLAN
:action-network [A-NETWORK | :all | NIL]))

response: No reply is expected. (return :ok message if requested)

9.8.4 Task Queries

The current query language supports different views of the task’s objectives and uses the

:query-task plan performative. The plan performatives and views currently supported in the

Act Plan Server are depicted in Figure 5. If no view is given, Query-plan assumes :ascii as the

default.

Query messages use the following general syntax:

78

invoke: (ask-all :content ’(:query-task :task TASK {:plan :all}
{:view VIEW-NAME}))

response: (reply :content (:query-task VIEW-DESCRIPTION))

Ask-one queries use the same syntax and generate the same responses for Query-plan

because its views are considered to be single-valued, even when the value is a list. If Ask-one

is used with other plan performatives, the value returned will be a list of length one, with the

list member being the first thing in the list that would have been returned by the equivalent

Ask-all query. If the equivalent Ask-all query does not return a list, then the value it does

return is also returned as the value of the Ask-one.

The special value :all can be used for both the :task and :plan keywords to find out which

tasks and plans are known to the plan server. When :all is used (it is the only allowable

value for :plan), a list of names is returned, and the :view keyword is ignored. The following

example message shows the use of the :all value to return a list of all known task names.

invoke: (ask-all :content ’(:query-task :task :all))
response: (reply :content (:query-task ("fennario-task" "foo"))

The :query-task performative causes a particular view of the task’s objectives (expressed

as an Act) to be retrieved from the plan server or computed from data stored in the plan server.

For example, if :view is :ascii, the plan server will convert a Grasper representation to ASCII.

The allowable views for task queries are described here.

Task Network Task View (:task-network) The value is a string containing the name of a

Grasper file. The file contains an Act representing the task’s objectives, as well as information

for drawing the Act attractively in Grasper.

ASCII Task View (:ascii) The value is an expression containing the ASCII representation

of the Act representing the task’s objectives.

ASCII Filename Plan View (:ascii-filename) The value is a string containing the name of a

file. The file contains the value that would have been returned by the :ascii view. This example

shows the use of this view:

invoke: (ask-all :content ’(:query-task :task "fennario-task"
:view :ascii-filename))

response: (reply :content (:query-plan
"/tie97/released/fennario.text"))

79

Assumptions Task View (:assumptions) The value is whatever free text was given as the

task’s assumptions.

9.8.5 Plan Queries

The current query language supports different views of the plan and uses two plan perfor-

matives, Query-plan and Query-node. The plan performatives and views currently supported

in the Act Plan Server are depicted in Figure 5. If no view is given, Query-plan assumes

:task-network as the default.

Query messages use the following general syntax:

invoke: (ask-all :content ’(:query-plan :task TASK {:plan PLAN}
{:action-network A-NETWORK}
{:view VIEW}))

response: (reply :content (:query-plan VIEW-DESCRIPTION))

invoke: (ask-all :content ’(:query-node :task TASK :plan PLAN
{:action-network A-NETWORK}
:view VIEW
:node NODE))

response: (reply :content (:query-plan (LIST-OF-NODES)))

Ask-one queries use the same syntax and generate the same responses for Query-plan

because its views are considered to be single-valued, even when the value is a list.

A Query-plan message can apply to either a task, plan or action network, while :query-

node messages always apply to action networks. The special value :all can be used for any of

the three keywords to find out which tasks, plans, and action networks are known to the plan

server. When :all is used, a list of names is returned, and the :view keyword is ignored. To

post different views at the plan level, :action-network should be NIL or omitted.

The following example messages show the use of the :all value in the three keywords that

permit its use.

invoke: (ask-all :content ’(:query-plan :task :all))
response: (reply :content (:query-plan ("AS-A"))

invoke: (ask-all :content ’(:query-plan :task "AS-A" :plan :all))
response: (reply :content (:query-plan ("plan-advice1-phase3"

"plan-advice1"))

80

invoke: (ask-all :content ’(:query-plan :task "AS-A"
:plan "plan-advice1"
:action-network :all))

response: (reply :content (:query-plan (AS-A-18 AS-A-17 ...))

The first query returns a list of all known task names, the second returns a list of all known

plan names for the given task, and the third returns a list of all known action-network names

for the given task and plan. All keywords not shown above are ignored (when :all is used).

Currently, the only queries supported for tasks use the value :all for either the :task or

:plan keyword. A query on plans is indicated by the :action-network keyword being omitted

or having a value of :all or nil, and the views for plans shown in Figure 5 are applicable.

A query on an action network is indicated by the :action-network keyword being the name

of a known action network, or the special value :last, which refers to the last action network

defined for the given task and plan. In this case, the views for action networks shown in

Figure 5 are applicable.

The :query-node performative always applies to an action network, although if the :action-

network keyword is nil or not given, it defaults to :last (in :query-node queries only). The view

must be given from those shown in Figure 5. A :query-node request returns a list of the names

of nodes that precede, succeed, or are unordered with respect to the given node in the given

plan (depending upon the view).

The Query-plan performative causes a particular view of the plan’s entire action network

to be retrieved from the plan server or computed from data stored in the plan server. For ex-

ample, if :view is :resource-constraints, a function walks over the action network and collects

the necessary constraints in an interlingua. The views that mention resources currently use

an interlingua specific to the ACP domain. The allowable views for both plans and action

networks are described here.

Task Network Plan View (:task-network) The value is a string containing the name of a

Grasper file. For action network queries, the file contains the Act representation of that action

network. For plan queries, the file contains an Act for all action networks in the plan. The file

not only contains the action network, but information for drawing the network attractively in

Grasper.

81

ASCII Plan View (:ascii) For action network queries, the value is an expression containing

the ASCII Act representation of the action network. For plan queries, the file contains the

ASCII Act representation of the plan, including all action networks in the plan.

ASCII Filename Plan View (:ascii-filename) The value is a string containing the name of a

file. The file contains the value that would have been returned by the :ascii view. This example

shows the use of this view:

invoke: (ask-all :content ’(:query-plan :task "AS-A"
:plan "plan-advice1"
:view :ascii-filename))

response: (reply :content (:query-plan
"/tie97/released/temp/plan-advice1-all-levels.text"))

Subplans Plan View (:subplans) The Act Plan Server allows some plans to be denoted

as subplans of other plans. This value is a list of the names of all plans that are considered

subplans of the given plan. For example, in the TIE 97-1 demonstration, the post-CTEM

support mission plan is considered a subplan of the pre-CTEM plan. This example shows the

use of this view:

invoke: (ask-all :content ’(:query-plan :task "AS-A"
:plan "plan-advice1"
:view :subplans))

response: (reply :content (:query-plan ("plan-advice1-phase3")))

Monitors View (:monitors) The value is a list of the ASCII Act representations of the

monitors for this plan (see Section 6.1). Currently, only the planner can compute the monitors

(eventually, the Act Plan Server should do this), and then only when Cypress or CPEF code is

loaded into the planner.

Monitor File View (:monitor-filename) The value is a string containing the name of a

Grasper file, which in turn contains a number of Acts that represent the monitors for this plan

(see Section 6.1).

82

Available-Resources ACP Plan View (:available-resources)In the future, the :available-

resources view may become a :query-domain performative in the Knowledge Server. The

:available-resources view specifies the available base and airframe objects, and the availability

over time of airframes at bases, with availability levels. The syntax is as follows:

(:base-list BASE-CLASS-SPEC
:airframe-list AIRFRAME-CLASS-SPEC
:availability

((AIRBASE-NAME
((AIRFRAME1 ((ARRIVAL-DAY SORTIES AVAILABILITY-LEVEL)

(ARRIVAL-DAY SORTIES AVAILABILITY-LEVEL)
...))

(AIRFRAME1 ((ARRIVAL-DAY SORTIES AVAILABILITY-LEVEL)
...)) ...)))

The BASE-CLASS-SPECandAIRFRAME-CLASS-SPECappear in the class/object hier-

archy of the Planner (or Knowledge Server). From this data, the Scheduler can extract the

necessary information about resource availability. Availability levels are described in Sec-

tion 6.2.3.

Resource-Constraints ACP Plan View (:resource-constraints) The syntax is as follows:

(:nodes
((:node-id NAME

:latitude LAT
:longitude LON
:resource-requirements

((MISSION-CATEGORY (AIRFRAME SORTIES BASE AVAILABILITY)
...) ...))

:start-time value ; mission start day
:end-time value) ; mission end day + 1

...)
:temporal-constraints (...))

The :resource-requirements slot contains a list of alternative airframe/quantity/base tuples in

order of preference for each mission-category. (The base is optional. If given, it provides a

preference for where the airframes should be based; otherwise, the nearest base with available

resources is assigned.)

83

Resource-Allocations ACP Plan View (:resource-allocations) The format for this view is

the same as :resource-constraints, but all fields are optional except :resource-requirements and

:base, which are the only things that are changed (allocated) by the Scheduler. Therefore, the

minimal format is:

(:nodes
((:node-id NAME

:resource-requirements
((MISSION-CATEGORY (AIRFRAME SORTIES BASE AVAILABILITY))

...))))

Note that in this view, because allocations have been made, the base always appears, and only

one airframe type is assigned foreach mission category. Note that the airframes may be taken

from different availability levels; the detailed information about how many airframes are taken

from each level is not currently returned.

9.9 Annotations

All operations on annotations use the :annotation plan performative. The allowed communi-

cation performatives are shown in Figure 3. Annotations are added with the Insert communi-

cation performative:

invoke: (insert :content (:annotation
[ANNOTATION | LIST-OF-ANNOTATIONS]

{:plan PLAN
:task TASK
:action-network A-NETWORK}))

response: (reply :content (:annotation LIST-OF-ANNOTATION-RELNS))

Annotations are encoded as predicates and stored in the plan server’s database. To dis-

tinguish action-network-specific from plan-specific from task-specific from task-independent

annotations, four variants are used as shown in Figure 4. This approach of separating the

task/plan/action-network from the relation used to represent the annotation enables more flex-

ible retrieval of annotation information (e.g., finding all plans or action networks that have a

given annotation, or finding all annotations for a given plan, task or action network).

Examples of messages that insert annotations were given in Section 7.4. The following

LISP function call generates a valid message for adding two annotations:

84

(mpa:make-msg ’insert
’(:annotation ((:level-complete) (:plan-ok?))

:task T-1 :plan P-3 :action-network AN-2))

Here is the message that posts backtracking points to the plan server; these points are

relevant to the overall task, not just an individual action network. For this reason, they do not

require a :plan argument:

(mpa:make-msg ’insert
‘(:annotation (:backtrack-choices ,choices)))

The return value is a list of annotation relations (LIST-OF-ANNOTATION-RELNS). An

annotation relation has one of the forms in Figure 15. These forms are similar to those in

Figure 4, except that keywords are not used.

(ANNOTATION <basic-annotation> TASK PLAN A-NETWORK)
(ANNOTATION <basic-annotation> TASK PLAN)
(ANNOTATION <basic-annotation> TASK))
(ANNOTATION <basic-annotation>)

Figure 15: Variants of Annotation relations: these variants distinguish action-network-specific
from plan-specific from task-specific from task-independent annotations.

Deletion of annotations is achieved by the following message:

invoke: (delete :content (:annotation [ANNOTATION | :any]
{:task [TASK |:all] :plan [PLAN | :all]
:action-network [A-NETWORK | :all} }))

response: (reply :content (:annotation LIST-OF-ANNOTATION-RELNS))

The :task :plan and :action-network arguments are optional, with their possible values

interpreted as follows:

:all - delete annotations associated with all such objects
TASK - only delete annotations for the named task
PLAN - only delete annotations for the named plan
A-NETWORK- only delete annotations for the named action network
no value - only delete annotations not tied to specific tasks

85

The value for the :annotation performative must be either an annotation or the special

symbol :any. For the value :any, all annotations in the plan server for the given :task :plan or

:action-network argument are deleted. For a given annotation, all annotations in the plan server

that unify with it (modulo the cases indicated by the :plan argument) are deleted. The specified

annotation can contain variables, in which case it acts as a kind of schema. Anything of the

form ID.NUMBER is interpreted as a variable — for example, PLAN.1 matches anything.

(PRS does not have a sorted logic, so the name of the variable is purely explanatory.)

The Delete-All performative for annotations returns a list of matches for the specified

annotation, represented as aLIST-OF-ANNOTATION-RELNS.

Queries about annotations are performed using the following message:

invoke: (ask-all :content (:annotation [ANNOTATION | :any]
{:task [TASK | :all]

:plan [PLAN | :all]
:action-network [A-NETWORK | :all] }))

response: (reply :content (:annotation LIST-OF-ANNOTATION-RELNS))

The semantics for the Ask-All performative are similar to those of the Delete performative:

the keyword arguments have the same meaning and they return the same values. The only

difference is that annotations are not deleted by Ask-All. Ask-One queries use the same syntax

and generate the same responses except that the list of annotations returned is of length one.

We would like to declare certain annotations as being functional in certain arguments

within the plan server, so that every sender would not have to worry about first deleting old

values of the annotation. This concern does not apply to “time-stamped” annotations, but an-

notations like the :backtrack-choices which apply to the whole process and not to a particular

plan should replace the former values of the same annotation (i.e., :backtrack-choices is func-

tional in its only argument). The Act Plan Server can do this by making the appropriate PRS

declaration for functional predicates.

9.10 Triggers

All operations on triggers use the :trigger plan performative. The allowed communication

performatives are shown in Figure 3. Triggers are added with the Insert performative:

invoke: (insert :content (:trigger :event E :destination D
:msg M :source S :id ID))

response: (reply :content (:trigger ID))

86

The first three keywords – :event, :destination, and :msg – are required. If :id is not pro-

vided, a unique identifier is supplied. The :msg field specifies the message to be sent when a

trigger is activated. The recipient of this message should be specified in the :destination field,

and must be anagent.

Currently, the :event field must be an annotation fact having one of the forms

shown in Figure 4, except that each<basic-annotation> is replaced by an

<annotation-schema> . In contrast to basic annotations, an annotation schema can con-

tain variables. Variables may appear in the :msg and :event specifications. The triggering

event will bind the variables appropriately, so they can be used in the outgoing message.

The origins of the trigger are documented using :source, which defaults to the name of

the sending agent. If an agent wishes to provide other sources for certain triggers, the :source

keyword can be used. Note that the source is specified as an agent name (e.g., “sipe”) while

the destination is specified as an agent role (e.g., :planner). It is necessary to document the

identity of the specific agent from which the trigger originated (in case the role is later filled

by a different agent), but the message should be sent to the agent filling a particular role, so

that a different agent filling that role will not receive the triggered messages.

Trigger insertion is performedonly if it is unique, meaning that one of the source, event,

destination, or message differs from all previously defined triggers. Here, difference is up to

variable renaming with respect to events and messages. If the trigger returned is unique, the

ID of the inserted trigger is returned; if the inserted trigger matches some trigger already in

the Plan Server, then the ID of the matched trigger is returned instead.

Triggers are deleted with the Delete communication performative:

invoke: (delete :content (:trigger :id ID))
response: (reply :content (:trigger ID))

If the plan server cannot find the trigger, nothing happens. MPA does not currently do any

authority management – for example, it could require that only the person who adds a trigger

can delete it.

Triggers are queried with the Ask-All communication performative:

invoke: (ask-all :content (:trigger :event E))
response: (reply :content (:trigger LIST-OF-MATCHING-TRIGGERS))

87

Ask-One queries use the same syntax and generate the same responses except that the list

of triggers returned is of length one.

Each trigger is represented by a fact in the database of the PRS agent that implements the

plan server. Trigger facts have the form

(TRIGGER <id> <source> <event> <msg> <dest>)

The following is an example of a fact used to encode a trigger to inform that planner to

activate certain advice when the :low-fuel annotation is posted for any action network.

(TRIGGER :fuel-advice-trigger ;id
"plan-server" ;source
(ANNOTATION (:low-fuel) TASK.1 PLAN.1 A-NETWORK.1) ;event
(TELL (:ADVICE :fuel-low)) ;message
:destination :planner) ;destination

10 Other Agents

In addition to the agents that were used in the demonstration, several other agents were either

partially designed or fully implemented. This exercise has further driven the specification of

our architecture and agent interface specification. Section 8.2 describes the agents for ACS

and APAT used in the TIE 97-1 demonstration. Two agents that may be of use in TIEs are

described here. The first has not been used to date, and the second is the lowest level agent

used in the temporal reasoner.

10.1 Sort Hierarchy Agent

As larger problems are addressed, the planner must use legacy databases rather than requiring

all data to be entered directly into the system. For this reason, we have begun making the

SIPE–2 sort hierarchy into an agent, which allows SIPE–2 to access other databases and allow

other agents to access any SIPE–2 sort hierarchy. This agent should be integrated into any

knowledge server that is implemented.

We have developed a Sort Hierarchy Agent interface specification to provide modular

access to static knowledge about classes and objects for SIPE–2. We have implemented two

separate instantiations of this agent. The interface specification consists of a small set of

functions (10) that provide the basic access operations required for planning. SIPE–2 can

88

be readily adapted to operate using any underlying frame representation system that provides

appropriate definitions for this agent interface. The interface has been implemented for the

original SIPE–2 hierarchy subsystem.

To further facilitate access to alternative representation systems, an instantiation of the Sort

Hierarchy agent has been defined for the Generic Frame Protocol (GFP), jointly developed for

DARPA at SRI International and Stanford University, that provides a uniform interface model

for frame-representation systems. By using this agent, SIPE–2 can now be run with any frame

representation system for which GFP has been implemented (e.g., USC/ISI’s Loom, SRI’s

SIPE–2 sort hierarchy, CMU’s Theo, Stanford’s Ontolingua).

10.2 Temporal Critic and Tachyon Server

The modularization and interaction of SIPE–2 and Tachyon were already in place from an ear-

lier ARPI TIE, but the communication had to be extended for KQML. We obtained the latest

version of Tachyon from General Electric, and updated the SIPE-Tachyon interface to work

with this version and to work within KQML. In fact, the SIPE-Tachyon interface was com-

pletely rewritten to more generally and accurately translate SIPE time constraints to Tachyon,

to use Tachyon-generated time windows in more planning algorithms, to update to the newest

version of Tachyon (which requires a different syntax), and to make use of new Tachyon fea-

tures regarding hierarchical nodes. SIPE–2 lays out the Tachyon networks so that the plan

displays nicely in the Tachyon GUI for easy debugging and viewing.

The interface for the Temporal Reasoner was described in Sections 9.6 and 7.4. We im-

plemented two Temporal Reasoner agents (the KQML agent name is Tachyon-server), one

using the LISP wrapper and one using the C wrapper. The Temporal Reasoner used in the

MPA demonstration is built using the C-language agent library functions described in Ap-

pendix B. The Tachyon-server agent is invoked by the Temporal Critic using a lower-level

protocol, described here, than the one used to invoke the Temporal Critic.

The Tachyon-server agent handles the Evaluate performative, and the plan performa-

tives :ping and :temporal-ok?. The :temporal-ok? performative takes keyword arguments

:constraint-file (giving the pathname of an input file for Tachyon) and :temporal-output-file

(specifying the destination for Tachyon’s output). If :temporal-output-file is not specified, the

agent replaces the “.tcn” extension on the input file with “.out,” or appends “.out” to the input

file name if no “.tcn” extension is found.

89

If the procedure is successful (the message was parsed correctly, and Tachyon was invoked

successfully), the Tachyon server returns a message with the content

(:temporal-ok? :temporal-ok :file OUTFILE)

where OUTFILE is the pathname of the Tachyon output file. Note that in this case, it is still

possible that the constraint network has not been solved (e.g., because there was a syntax

error in the constraint file, or because the constraints are inconsistent). The Tachyon-server

does not “know” anything about the contents of the input or output files, only whether the

Tachyon program has run to completion. The Temporal Critic is responsible for parsing the

information returned by Tachyon.

If an error occurs (for example, the message syntax is incorrect, or the Tachyon executable

or input/output files cannot be accessed correctly), the server returns a message with the con-

tent(:temporal-ok? :temporal-failure :error ERROR-STRING)

whereERROR-STRINGis a description of the error.

11 Future Work

Promising directions for extending this work are numerous. They include the following:

� Experimenting with additional configurations and cooperative problem-solving meth-
ods.

� Broadcasting messages to fill planning cells with agents.

� Defining a broader range of cell-manager control strategies and planning styles.

� Incorporating additional technologies as new agents.

� Extending the plan server (possible extensions include the plan representation, access
control to the plan, version control, and graphical browsing capabilities).

12 Summary

MPA is an open planning architecture that facilitates incorporation of new technologies and

allows the planning system to capitalize on the benefits of distributed computing for efficiency

and robustness. MPA provides protocols to support the sharing of knowledge and capabili-

ties among agents involved in cooperative problem-solving. Within MPA, software modules

written in different programming languages can easily interoperate.

90

MPA configurations show the flexibility provided by MPA. Separate software systems

(OPIS, Tachyon, ACS, APAT, the Advisable Planner, and SIPE–2, using KQML, the Act-

Editor, and PRS for support) cooperatively generate and evaluate plans, generating multiple,

alternative plans in parallel. These systems are combined in multiple ways through the flexible

architecture.

The MPA framework has been used to integrate several sophisticated stand-alone systems

cooperating on a large-scale problem. The MPA configuration generated and evaluated com-

plex plans (containing more than 4000 nodes) in the ACP domain, and included agents written

in C, C++, LISP, and Java. MPA was used as the infrastructure for ARPI’s TIE 97-1.

The Act Plan Server allows flexible communication of the plan among agents through the

use of annotations, triggers, and views. The PCM encodes different strategies for controlling

the planning process, demonstrating dynamic strategy adaptation in response to partial results.

The planner and scheduler use legacy systems to provide a new integration of planning and

scheduling technologies.

Other sites have been able to download the MPA wrapper and get an existing LISP program

communicating as an MPA agent in one day. Our experience indicates that MPA does indeed

facilitate the integration of new technologies, thus encouraging experimentation with and use

of new technologies.

Acknowledgments

This research was supported by Contract F30602-95-C-0235 with the Defense Advanced Re-
search Projects Agency, under the supervision of Air Force Research Lab – Rome. Tom Lee
made significant contributions, and was responsible for the ACP KB.

91

References

[1] Paul Cohen, Scott Anderson, and David Westbrook. Simulation for ARPI and the Air
Campaign Simulator. In A. Tate, editor,Advanced Planning Technology: Technological
Achievements of the ARPA/Rome Laboratory Planning Initiative, pages 113–118, AAAI
Press, Menlo Park, CA, 1996.

[2] E. H. Durfee, M. J. Huber, M. Kurnow, and J. Lee. Taipe: Tactical assistants for interac-
tion planning and execution. InProceedings of Autonomous Agents ’97, 1997.

[3] Kutluhan Erol, James Hendler, and Dana S. Nau. Semantics for hierarchical task-
network planning. Technical Report CS-TR-3239, Computer Science Department, Uni-
versity of Maryland, 1994.

[4] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, and
J. McGuire. Specification of the KQML Agent-Communication Language. Technical
Report EIT T R92-04, Enterprise Integration Technologies, Palo Alto, CA, 1992.

[5] Bill Janssen, Mike Spreitzer, Dan Larner, and Chris Jacobi. ILU 2.0 reference manual.
Technical report, Xerox PARC, December 1997.

[6] P.D. Karp, J.D. Lowrance, T.M. Strat, and D.E. Wilkins. The Grasper-CL graph man-
agement system.LISP and Symbolic Computation, 7:245–282, 1994.

[7] Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, David L. Martin, and Sangkyu Park.
Multimodal user interfaces in the Open Agent Architecture. InProc. of the 1997 Interna-
tional Conference on Intelligent User Interfaces (IUI97), Orlando, Florida, 6-9 January
1997.

[8] Karen L. Myers. Strategic advice for hierarchical planners. In L. C. Aiello, J. Doyle,
and S. C. Shapiro, editors,Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fifth International Conference (KR ’96). Morgan Kaufmann Publishers,
1996.

[9] Karen L. Myers and David E. Wilkins.The Act-Editor User’s Guide: A Manual for Ver-
sion 2.2. Artificial Intelligence Center, SRI International, Menlo Park, CA, September
1997.

[10] Karen L. Myers and David E. Wilkins.The Act Formalism. Artificial Intelligence Center,
SRI International, Menlo Park, CA, version 2.2 edition, September 1997.

[11] C. J. Petrie. Agent-based engineering, the web, and intelligence.IEEE Expert, 11(6):24–
29, December 1996.

92

[12] Stephen Smith. Opis: A methodology and architecture for reactive scheduling. In M. Fox
and M. Zweben, editors,Intelligent Scheduling. Morgan Kaufmann Publishers Inc., San
Mateo, CA, 1994.

[13] D. S. Weld. An introduction to least committment planning.AI Magazine, 15(4):27–61,
1994.

[14] David E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

[15] David E. Wilkins. Can AI planners solve practical problems?Computational Intelli-
gence, 6(4):232–246, 1990.

[16] David E. Wilkins. Using the SIPE-2 Planning System: A Manual for Version 4.21. SRI
International Artificial Intelligence Center, Menlo Park, CA, July 1998.

[17] David E. Wilkins and Roberto V. Desimone. Applying an AI planner to military op-
erations planning. In M. Fox and M. Zweben, editors,Intelligent Scheduling, pages
685–709. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1994.

[18] David E. Wilkins and Karen L. Myers. A common knowledge representation for plan
generation and reactive execution.Journal of Logic and Computation, 5(6):731–761,
December 1995.

[19] David E. Wilkins, Karen L. Myers, John D. Lowrance, and Leonard P. Wesley. Plan-
ning and reacting in uncertain and dynamic environments.Journal of Experimental and
Theoretical AI, 7(1):197–227, 1995.

93

A LISPWrapper

The LISP wrapper for MPA is easily incorporated in all LISP-based agents. It provides func-

tions for making, sending and replying to messages that log and trace the message exchange.

There are functions for the PCD, for starting and killing agents, and for starting and stopping

tracing. There are also message handlers for both the :ping and :pcd plan performatives. The

MPA LISP wrapper is loaded with(sri:load-system :mpa) , but generally a :subsys-

tem keyword argument is given whose value is the subsystem for your agent. (All subsystems

load the basic wrapper functions.)

The wrapper contains a filehandlers-mpa.lisp , that defines default handlers for the

:ping and :pcd plan performatives. This file is not loaded with the wrapper, because it would

redefine any Tell and Evaluate handlers already defined in an agent. If an agent responds only

to the above two plan performatives in its Tell and Evaluate handlers, the wrapper handlers can

be used by loadinghandlers-mpa.lisp as part of the agent. If an agent responds to other

plan performatives, then it must define its own Tell and/or Evaluate handler. Such handlers

should be created by extending the default handlers, because every agent must respond to :ping

and :pcd performatives. In addition, the default handlers show the proper use of several MPA

wrapper functions.

The wrapper supports both logging and tracing. Tracing is the tracing of MPA messages

in CLIM windows on the screen, generally there is one such window for each agent. Tracing

is useful for demonstrations and following the flow of the system during execution, but the

trace cannot be saved. Logging, on the other hand, produces a log that can be saved to a file

or inserted in a mail message.

By default, the MPA wrapper functions translate the content field of messages to cl-user

package to avoid package problems. All agents should have cl-user package defined, and

the receiving agent must have any packages defined that occur in the content of a received

message. Optional arguments allow this feature to be disabled in cases where the content

is already in an appropriate package. Package translation produces copies of the content, so

disabling it can save consing.

The following functions and variables compose the application programmer’s interface

(API) for the MPA wrapper. All symbols are in MPA package (unless otherwise specified).

94

A.1 Global Variables

cl-user::*mpa-substrate* [Variable]

This variable denotes which communication substrate should be loaded with MPA. The default
value is:kqml , but :oaa-kqml also works with some restrictions.

log-stream [Variable]

This variable is the stream used for logging by the wrapper functions. Initially, this is
debug-io which is the initial xterm or Emacs window in which the LISP job was run.

pcd [Variable]

This variable stores the PCD for the agent.

log-msgs [Variable]

This variable controls logging globally. When it is NIL no logging output is produced. When
it is T (the default), logging is enabled and the*unlogged-perfs* variable and other
agent-specific variables control the amount of logging.

unlogged-perfs [Variable]

The value of this variable can be a list of plan performatives which are not logged.

default-msg-trace-window [Variable]

This variable controls tracing globally. When it is NIL (the default), tracing is disabled. If
there is only a single KQML agent in the image, this variable should be set by calling the
function start-tracing . If there are multiple pseudoagents in the image, alet bind-
ing should bind this variable in each pseudoagent to a window produced by the function
create-msg-trace-window .

abbrv-msg-trace-mode [Variable]

When this variable is nil, full messages are printed in the trace; when non-nil, abbreviated
versions of messages are printed. The default value is T.

abbrv-max-string-content-length [Variable]

In abbreviation mode, this variable gives the maximum number of characters that will be
traced for the content field; NIL means no limit. The default value is 50.

95

abbrv-print-length [Variable]

This variable specifies the value ofcl:*print-length* used in abbreviation mode. The
default value is 7.

abbrv-print-level [Variable]

This variable specifies the value ofcl:*print-level* used in abbreviation mode. The
default is 3, which traces one level deep into the content field.

The following variables are used to customize the behaviour of the planner for a partic-

ular domain (although other agents may want to use them). They are described in detail in

Section 9.3.2, and can be overridden by messages sent to the planner.

plan-to-server [Variable]

This variable serves two purposes: when it is nil, it disables all sending of information to the
plan server; else, it is the name of a view and the planner sends that view of the plan to the
plan server server. The default value is :task-network (see Section 9.3.2).

all-levels-to-server [Variable]

When the plan is completed, there is an option for sending all the action networks of a plan
to the plan server as a single plan-level update. This variable is the name of a view to use for
such an update. The default value is nil, which means no all-levels view is sent, but only the
view for the final action network (as determined bympa:*plan-to-server*).

monitors-to-server [Variable]

This variable determines how and if the monitors are sent to the plan server after a fi-
nal plan is found. A value of nil disables sending monitors (as does a nil value for
mpa:*plan-to-server*). The other allowable values are the two views for monitors, :mon-
itors and :monitor-filename.

draw-plan-after-reply [Variable]

If non-nil, this variable causes the Search Manager to draw each action network it generates in
a level-by-level expansion, or the final action network for a Generate-plan request. The default
is nil, because drawing can slow down the planning process for large plans.

96

A.2 Functions for Agents

start-agent name &key trace log ans-host [Function]

This function registers the current image as an agent with the given name. When non-nil,
sexptrace enables tracing and gives the label to be used for the trace window that will be
created bystart-tracing . Trace defaults to “MPA Message Trace”.Log specifies the
value for*log-msgs* , and defaults to t.Ans-host specifies the internet address of the
machine where the name server is running, and defaults to “wedge.ai.sri.com”.

kill-agent [Function]

This function unregisters the currently running agent and callsstop-tracing to destroy
its tracing window.

agent-for-role role [Function]

This function is used to retrieve the name of the specific agent that is fulfillingrole in the
PCD. For example, sending a message to the plan server is done as follows:
(mpa:send-msg msg (mpa:agent-for-role :plan-server))

A.3 Functions for Messages

send-msg msg agent &optional log window [Function]

This function sends the given message to the given agent, with tracing and logging (of both
sending and any response) as directed by global variables and optional arguments. Iflog
is t (the default), the message and the reply are logged. Iflog is :skip-reply, the message
is logged, but not the reply.Window specifies the window to use for tracing, defaults to
default-msg-trace-window , and can be used to disable a default trace or trace to a
different window than the default.

make-msg c-perf content &optional translate-pkg? reply-with [Function]

This function makes an MPA message with the given communication performative and content
field. If translate-pkg? is non-nil (the default), the content field is translated to cl-user
package. If a reply is desired,reply-with should be non-nil (the default is NIL). Tracing
is done as directed by the global variables.

make-response val p-perf &optional error orig-msg
cons-it translate-pkg log [Function]

97

This function makes an MPA message that is a response to an incoming message, with tracing
and logging as directed by global variables and optional arguments.Val is the value computed
for the response, andp-perf is the plan performative. The content field of the reply has
p-perf as its car andval either as its cdr (ifcons-it is non-nil) or as its cadr (the default).

If the reply represents an error,error should be non-nil, preferably a string explaining
the error. In this case, the Error communication performative is used in the reply, and a :error
keyword is added to the content field. The value oforig-msg is optional and is used to add
information to the log. Iftranslate-pkg? is non-nil (the default), the content field is
translated to cl-user package. Iflog is non-nil (the default), the generated reply is logged.
Tracing is done as directed by the global variables.

make-response-key val p-perf &key error orig-msg
cons-it translate-pkg log [Function]

This function is a keyword version ofmake-response .

make-ok-response msg &optional log-receipt [Function]
This function generates a :ok response to an incoming message, with tracing and logging
as directed by global variables and optional arguments. Iflog-receipt is non-nil (the
default), the receipt of the incoming message is logged.

unknown-perf-response p-perf &optional msg [Function]
This function generates the standard reply message for an unknown plan performative error. If
given, the incoming message,msg, is used to add its communication performative to the error
message. The incoming message must be given it it comes from an agent written in Java.

always-reply error plan-perf reply-content msg [Function]
This function makes and logs a response tomsg whenever a reply is requested, returning nil
if no reply is requested.Error should be non-nil only for unknown performative errors,
and causesunknown-perf-response to be called. Otherwise, a list of (plan-perf
reply-content) is used as the content of a reply, except that if reply-content is a cons
whose car is :error, thenplan-perf is consed onto thereply-content list.

translate-pkg s-exp pkg [Function]
This function returns an s-expression that is equal tos-exp except for the packages of sym-
bols. All non-keyword symbols in the returned value are in the package specified bypkg ,
which can be a package object, a symbol, or a string. For lists, this function returns a copy of
s-exp .

content-field msg [Function]
This function returns the content field of the given message.

reply-field msg [Function]
This function returns the reply-with field of the given message.

sender-field msg [Function]
This function returns the sender field of the given message.

98

A.4 Functions for Tracing and Logging

The functions in this section are lower-level functions used by functions already described.

Their use is only necessary when multiple pseudoagents exist in an image, or to customize

the default tracing and logging. Functions whose names begin withlog do both tracing and

logging.

create-msg-trace-window &optional label [Function]

This function creates a CLIM window with the given label, which defaults to “MPA Message
Trace”.

start-tracing &optional label [Function]

This function creates a trace window (if necessary) with the given label, which defaults to
“MPA Message Trace” , and binds it to*default-msg-trace-window* .

stop-tracing [Function]

This function can be called at anytime to stop tracing in the current agent. The default trace
window is destroyed and*default-msg-trace-window* is set to nil.

clear-tracing &optional (frame *default-msg-trace-window*) [Function]

This function can be called at anytime to clear a trace window. This is useful for resetting
agents. The default is to clear the*default-msg-trace-window* of the current agent.

log-receipt msg &optional p-perf [Function]

This function traces and logs a message that has been received, as directed by global variables.
It is usually called inside a message handler. The plan performativep-perf , if given, is used
to conditionalize logging and tracing using the functionlog-for-perf? . If p-perf is
omitted, the message is logged.

log-response msg &optional p-perf orig-msg [Function]

This function traces and logs a message that is a response to an incoming message
(orig-msg), as directed by global variables. This function should not be used when
make-response is used. The plan performativep-perf , if given, is used to conditionalize
logging and tracing using the functionlog-for-perf? . This function is useful when re-
sponses are computed in many different places and one wishes to log the response in a central
place (e.g., the handler for the incoming message).

log-for-perf? p-perf [Function]

This function returns a non-nil value when the given plan performative should be logged, using
the value of*unlogged-perfs* . A null performative is always logged.

99

A.5 Miscellaneous Functions and Examples

The LISP wrapper also includes some non-API functions that are useful either as functions or

as examples of the use of API functions. The functionping-msg creates a :ping message,

using the name of the current agent as the sender. Three functions can be used to generate

messages with the required syntax for the :annotation plan performative:

insert-annotation-msg query-annotation-msg delete-annotation-msg

For example, the following call generates a message that, when sent to the plan server, will

insert :level-complete and :plan-ok? annotations for task T-1, plan P-3, and action network

AN-1:

(mpa:insert-annotation-msg
’((:level-complete) (:plan-ok?))
T-1 P-3 AN-1)

The functionbasic-annotations takes a complete message that is a reply from the

plan server for a query on :annotation, and returns the basic annotations from the content field.

The functionmake-msg should be used to make responses without logging and tracing.

Responses can then be logged in a central place (e.g., the handler for the incoming message)

usinglog-response .

100

B C Wrapper and Agent Library Documentation

We developed a library of C functions that can be used to quickly implement a C-language

wrapper for an existing “legacy” agent. This library provides an asynchronous MPA message

handler that invokes the executable image for the legacy agent as requested, and returns the

necessary responses. The handler must be programmed to translate the specific incoming

messages into suitable invocations of the legacy agent (e.g., given appropriate command line

arguments).

The library includes a set of functions for parsing LISP s-expressions, which facilitates

interaction between LISP-based and C-based agents, and allows the C agents to handle the

LISP-like MPA message syntax. A debug flag can be turned on or off by the developer to trace

the parsing and message handling functions. (The hyphens in the function names are generally

underscores in C.)

Implementing agents: To implement a C-based agent, the developer must write a C pro-

gram that registers the agent with the KQML name server (using the KQML function

kqml-initialize) and registers each handler (i.e., each type of performative the agent

understands) (using the KQML functionkqml-register). The handlers must be defined

using the handler interface described in the KQML manual.

Implementing handlers: SRI has written a Tachyon-Server agent using this C wrapper.

This agent serves as a template for handlers. The basic structure of a handler for an MPA

agent is as follows:

� Trace the received message usingmpa-trace-msg (this library function provides the
same functionality as the LISP wrapper, printing a short description of a message that is
being sent or received).

� Build a default reply message. Typically, this contains a Reply performative and the
initial part of the content field for an error message.

� Initialize the parser by callinginit-lisplex .

� Parse the content field of the received message. For LISP messages, this normally in-
volves usingparse-token to look for an open parenthesis, then repeatedly parsing
and handling keywords and their associated values until a close parenthesis is reached
(or the end of the stream is reached, which would be an error). The particular keywords
and values depend on the message type being handled.

101

� Invoke the legacy agent using therun-program function with the appropriate argu-
ments (which were extracted from the token stream in the previous step).

� Construct, trace, and return the reply message.

� If at any point an error is encountered, the library functionreturn-error provides a
simple interface for returning an error message in the correct format.

Parsing LISP expressions: We wrote a parser using the UNIX utilitylex that parses the

content of a message (which is received as a string by the C handler) into a token stream.

Each token corresponds to a LISP symbol, keyword, number, variable name, quoted string,

or parenthesis. In addition, the library includes a set of functions to make it easy to de-

compose this token stream into an expected sequence of keywords and values. The function

parse-token(type) returns the next token in the stream if it is of the named type; oth-

erwise, it returns an error. Thematch-keyword(token, kwd) function checks to see if

the token matches a named keyword.

Invoking legacy agents: The functionrun-program mimics the LISP run-program func-

tion; it takes the pathname of the agent executable and a list of arguments, and invokes the

agent using an external system call.

102

