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Abstract

The Multiagent Planning Architecture (MPA) is a
framework for integrating diverse technologies into
a system capable of solving complex planning prob-
lems. Agents within MPA share well-defined, uni-
form interface specifications that facilitate integration
of new technologies and experimentation with differ-
ent problem-solving strategies. MPA provides a cen-
tral repository for storing plan-related information in
a shared plan representation, and metalevel agents
that control and customize the interactions between
other agents. The MPA framework has been vali-
dated through its use in developing several large-scale
problem-solving systems for Air Campaign Planning.1

Introduction
The Multiagent Planning Architecture (MPA) is a frame-
work for integrating diverse technologies into a system ca-
pable of solving complex planning problems. MPA has
been designed for application to planning problems that
cannot be solved by individual systems, but rather require
the coordinated efforts of a diverse set of technologies and
human experts. MPA agents can be sophisticated problem-
solving systems in their own right, and may span a range
of programming languages. MPA’s open design facilitates
rapid incorporation of tools and capabilities, and allows the
planning system to capitalize on the benefits of distributed
computing architectures for efficiency and robustness.

Agents within MPA share well-defined, uniform inter-
face specifications, making it possible to explore a broad
range of cooperative problem-solving strategies. This paper
describes two areas in which such exploration was under-
taken. Sophisticated systems for planning and scheduling
have been decomposed into modules,each of which has
been transformed into an agent, allowing experimentation
with different degrees of coupling between the planning and
scheduling capabilities. A second area is the definition of
organizational units for agents that permit flexible control
policies in generating plans. Within MPA, notions ofbase-
level planning cellsandmetalevel planning cellshave been

1Copyright (c) 1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

defined, where the baselevel cells provide sequential solu-
tion generation and the metalevel cells employ baselevel
cells to support parallel generation of qualitatively differ-
ent solutions. Metalevel cells provide the ability to rapidly
explore the space of solutions to a given planning problem.

The MPA framework has been used to develop sev-
eral large-scale problem-solving systems for the domain of
Air Campaign Planning (ACP). One such application inte-
grated a set of technologies that spanned plan generation,
scheduling, temporal reasoning, simulation, and visualiza-
tion. These technologies cooperated in the development
and evaluation of a complex plan containing more than
4000 nodes. This integration has validated the utility of
MPA for combining sophisticated stand-alone systems into
a powerful integrated problem-solving framework.

MPA is distinguished from other agent architectures
(such as (Moranet al. 1997)) in its emphasis on appli-
cation tolarge-scale planningproblems. The architecture
includes agents designed specifically to handle plans and
planning-related activities. Interagent communication pro-
tocols are specialized for the exchange of planning infor-
mation and tasks. Another distinguishing feature of MPA
is the emphasis on facilitating the integration of agents that
are themselves sophisticated problem-solving agents. One
of the primary goals of MPA is to facilitate such integra-
tions. Most agent architectures develop specialized agents
that are suited for operation within that specific architecture
rather than incorporating legacy systems.

MPA provides the infrastructure necessary to support
a broad range of distributed planning capabilities. At
present, however, it does not include mechanisms for coor-
dinating subplans generated by distributed planning agents
(Georgeff 1984). We intend to explore algorithms for dis-
tributed planning in the future, and believe that our infras-
tructure will support them.

MPA Overview
MPA is organized around the concept of aplanning cell,
which consists of a collection of agents committed to a
particular planning process. A planning cell contains two
distinguished agents — theplanning-cell managerand the
plan server. Theplanning-cell managercomposes a plan-
ning cell from a pool of available agents and distributes the



Figure 1: Sample Organization of a Planning Cell

planning task among the selected agents. Theplan server
is the central repository for plans and plan-related informa-
tion during the course of a planning task. It accepts incom-
ing information from planning agents (PAs), performs nec-
essary processing, stores relevant information, and makes
this information accessible to any PA through queries. An
optionaldomain serverstores application-specific informa-
tion of relevance to the planning process, which may be
shared among all cell agents. The domain server might
store, for example, situation models, an object hierarchy,
legacy databases, and the set of action descriptions to be
used in planning.

The MPA architecture rests upon a significant amount of
infrastructure. One component is ashared plan represen-
tation that can be understood by all planning agents. MPA
employs the Act formalism for this purpose (Wilkins & My-
ers 1995). Additional components include a communica-
tion substrate to support asynchronous interagent message
passing across networks, and tools to facilitate the construc-
tion of agents and planning cells. MPA provides both a
message format and a message-handling protocol to sup-
port the sharing of knowledge among agents involved in
cooperative plan generation.

Planning Cells
MPA planning cells are hierarchically organized collections
of planning agents that are committed to one particular
planning process for a given period of time (see Figure 1).
Each planning cell has a meta-PA (a PA that controls other
PAs) that serves as theplanning-cell manager(or, simply
thecell manager), which decomposes a planning task and
distributes it to the PAs of the planning cell.

A cell manager may distribute tasks to both PAs and
other meta-PAs. The planning cell is the closure of all
PAs registered by the cell manager along with any PAs they
invoke. Individual cell managers compose their planning
cells to reflect their own planning approach. For example,

a mixed-initiative cell manager may include human agents
in its cell. One cell manager might loosely couple planning
and scheduling, while another might tightly couple them.

The cell manager maintains a Planning-Cell Designator
(PCD) that defines a set ofroles to be filled. A role consti-
tutes a capacity or responsibility, such as plan generation or
scheduling. Each role must be filled by an agent with the ca-
pabilities required by that role. The PCD records the name
of the agent that fulfills each role in the current planning
cell at any given point in time. (The agent playing a role
may change during the planning process.) The cell man-
ager stores and maintains the PCD, broadcasting changes to
the cell agents as appropriate. Local copies of the PCD are
maintained by each agent to eliminate the need to query the
cell manager for current role assignments prior to sending
each message (thus substantially reducing interagent mes-
sage traffic).

Composing a planning cell involves establishing commu-
nication with an agent for each role specified in the PCD,
where these agents are then committed to this particular
planning process. Currently, the MPA cell manager can
employ a prespecified planning-cell configuration, or have
a human user compose the cell from available agents.

As MPA expands to include different technologies with
similar or overlapping capabilities, it will be desirable to
define acapabilities modelfor each agent that describes
the functionality and I/O requirements for the agent. A
cell manager could then compose a planning cell automati-
cally by broadcasting for agents with the required capabili-
ties. Most current technologies for planning have capabili-
ties or input languages that differ substantially from related
technologies, so automated construction of a planning cell
based on capabilities descriptions is not yet practical.

Plan Model
The MPA plan model distinguishes the concepts of task,
plan, and action network.

A task is defined by a set of objectives that is to be
achieved through planning. Anaction networkis a partial
order ofnodes, where a node represents a planning entity,
such as an action, goal, or condition. Action networks can
span multiple levels of abstraction, and can represent both
intermediate and final collections of actions for a plan. A
planconsists of a set of linked action networks that encode
some or all of the derivation structure for a plan. Addi-
tionally, a plan may include information that was used in
generating the plan, such as assumptions, planning advice,
or control rules. A number of alternative plans can be pro-
duced for a given task.

MPA Communication
MPA provides a rich interagent communication framework,
composed of a set of MPA specific protocols layered on top
of a lower-level communication substrate. Three software
packages can provide this substrate for MPA: the Knowl-
edge Query and Manipulation Language (KQML)(Fininet
al. 1992), Inter-Language Unification (Janssenet al.1997),
and the Open Agent Architecture (Moranet al.1997). MPA



is usually run on top of KQML, but preliminary implemen-
tations on top of the other two also exist.

MPA provides both a message format and a message-
handling protocol to support the exchange of knowl-
edge and requests among agents involved in coopera-
tive problem-solving. The message structures incorporate
KQML’s notion of performatives, referred to ascommu-
nication performativeswithin MPA. MPA further specifies
its own set ofplan performatives, which specialize KQML
messages to planning activities. Combinations of commu-
nication and plan performatives define the message proto-
cols that enable agents to interact with each other.

An MPA message consists of a communication perfor-
mative and a set of fields specified as keyword/value pairs.
The two most important fields are :content and :reply-with.
The :reply-with field indicates whether or not a reply is ex-
pected by the sending agent. The :content field consists of
the plan performative, an optional value, and a set of op-
tional keyword/value pairs for that plan performative.

Below are two sample messages sent by the cell manager
to the plan server. The first is used to verify that the receiv-
ing agent is alive; for this reason a reply is requested. A
sample response is provided. The second message informs
the receiving agent of a new PCD; it requires no response.

(EVALUATE :SENDER PCM :REPLY-WITH PING
:CONTENT (:PING))

(REPLY :SENDER "plan-server"
:CONTENT (:PING :OK))

(TELL :SENDER PCM :CONTENT
(:PCD ((:MANAGER "pcm")(:PLANNER "sipe")

(:SCHEDULER "opis")
(:PLAN-SERVER "ps1"))))

These messages are handled by all agents. Additionally,
agents service messages that are specific to the roles that
they are filling (as described below).

MPA provides wrappers and agent libraries that sup-
port interagent message-passing, multi-threaded process-
ing, tracing of messages, and logging of messages to a his-
tory file. These wrappers are designed to facilitate rapid
integration of new technologies into MPA. Other sites have
been able to used these wrappers to convert legacy LISP
programs into communicating MPA agents in a single day.

Plan Servers
A central problem in a multiagent architecture is how to
maintain and communicate various alternative plans being
generated to the PAs. MPA accomplishes this by having a
plan serveragent in each planning cell, although a single
plan server agent can be shared by multiple planning cells.
The plan server provides the central repository for plans and
plan-related information, making this information accessi-
ble to all cell agents through a rich query language. The
plan server is apassiveagent in that it responds to mes-
sages sent by other agents but does not issue messages to
other agents on its own initiative.

The plan server accepts incoming information from
agents, performs necessary processing, and stores relevant

information in its internal representation. The plan server
stores representations of plans (both final and intermediate)
for various tasks. To support distributed planning, the plan
server must also store information about the planning pro-
cess: contexts, backtracking points, declarative information
about the state of the plan (e.g., a list of flaws), and so forth.
The plan server is also responsible for notifying various
agents of relevant planning events.

An MPA plan server supports differentviewsof a plan,
where a view constitutes some coherent subset of the con-
tent of a plan. For example, resource usage and graphi-
cal representations constitute two sample views of a plan.
Views enable more efficient exchange of information within
MPA: rather than having to retrieve an entire plan from the
plan server to access certain information, agents can instead
request a view with only the information that they require.
Certain views are directly retrievable from the plan server,
while others must be computed by performing some traver-
sal of plans and action networks.

Annotations
Annotations are declarations of high-level attributes of
tasks, plans, action networks, or the state of the plan-
ning process. Useful annotations for tasks, plans, and
action-networks (calledproduct annotations) include flaws
or problems to be repaired, plan quality information, pedi-
gree (how and by whom parts of the plan were derived),
and comparative relationships among alternative plans and
plan fragments. Annotations related to the planning process
(calledprocess annotations) include time spent, backtrack-
ing points, and the current state of development for a given
plan (e.g., :ongoing, :completed, :failed).

Annotations are stored as predicates in the plan server’s
database. Annotations can be posted to the plan server by
any cell agent, including the plan server itself. Product
annotations are indexed by task/plan/action-network, thus
allowing flexible retrieval (e.g., finding all plans or action
networks that have a given annotation, or finding all anno-
tations for a given plan, task or action network).

Triggers
A trigger is a form of event-response rule whose function is
to notify specified PAs of a designated plan server event. An
individual trigger is activated by the occurrence of that des-
ignated event. For now, events are limited to the insertion
of annotations into the plan server. Activation of a trigger
results in the dispatch of a trigger-dependent message to a
designated PA. The triggered message may simply inform
the receiving agents of the triggering event, or request that
some action be taken.

Triggers can be supplied by various sources. Certain of
them may be built into the plan server, while others may be
dynamically added and removed during the planning pro-
cess. For instance, the cell manager may post triggers at
various times to influence the overall planning process. In-
dividual PAs may post and remove triggers to request noti-
fication of particular events.



Plan Performative Communication Performatives
:annotation Insert, Delete, Ask-All, Ask-One
:trigger Insert, Delete, Ask-All, Ask-One
:update-task Tell, Delete
:update-plan Tell, Delete
:query-plan Ask-All, Ask-One
:query-node Ask-All, Ask-One

Figure 2: Performatives for the Plan Server

Annotations and triggers can be used in tandem to pro-
vide dynamic control of the planning process. For example,
suppose that temporal conflicts are arising frequently dur-
ing the planning process, causing backtracking at the end of
every level. The cell manager can be made aware of this sit-
uation by monitoring annotations posted to the plan server.
After noticing the temporal problems, the it decides to in-
voke the temporal reasoning agent after every node expan-
sion, in order to catch temporal conflicts earlier and reduce
backtracking. This change in control can be easily accom-
plished by the cell manager inserting a trigger in the plan
server that sends the appropriate message to the temporal
reasoning agent whenever a Node-Expanded annotation is
posted.

Communication and Plan Performatives
The combinations of communication and plan performa-
tives in messages handled by an MPA plan server are shown
in Figure 2. Ask-One is the appropriate communication
performative for plan queries when only one answer is de-
sired, while Ask-All is used when all answers (i.e., a set of
answers) are desired.

Annotations and triggers are sufficiently similar to
database objects that the plan server uses simple database
communication performatives for manipulating them. Up-
dating and querying a plan is more complex than adding
and deleting something from a database. Therefore, a richer
plan performative language is used for manipulating plans.

Act Plan Server
We have implemented a specific plan server, named the Act
Plan Server, which employs the Act formalism (Wilkins &
Myers 1995) for plan representation.

An Act is the basic structure used to represent an action
network in the Act formalism. Acts can be expressed ei-
ther in a format with embedded graphical information or
in plain-text format (to facilitate translation to other lan-
guages). Graphical browsing and editing capabilities are
provided by the Act-Editor system; persistence is provided
through the explicit writing of Acts to files. Alternative
plans can be stored for the same task. No access control
or versioning is provided currently (other than the ability to
store alternative plans for the same task).

The Act Plan Server supports a reasonably broad set of
queries, at the level of tasks, plans, and action networks.
For example, queries can be used to extract the set of known

tasks, the set of plans for a given task, and the set of action
networks for a given task or plan. Queries are also possible
at the level of nodes within an action network (e.g., prede-
cessor, successor, ancestor, descendant relationships). An-
notations and triggers can be queried with a fairly general
query language. Plan and action-network queries support
a range of views including the plain-text Act representa-
tion, the graphical Act representation, the subplans asso-
ciated with a given plan, the resource constraints, and the
resource allocations.

The Act Plan Server is implemented as a PRSagent. PRS
(Wilkins et al. 1995) was chosen as the implementation
framework because of its ability to combine both declar-
ative and procedural representations of knowledge, as well
as to support a mixture of event- and goal-driven processing
as required for the maintenance of annotations, the handling
and distributingof incoming messages, and the execution of
triggers.

Planning-Cell Managers
A cell manager is a persistent agent that can continuously
accept tasks from other agents (human or software), decom-
pose those tasks into subtasks to be performed by its cell
agents, then recompose the results into final solutions.

A planning cell can operate as a stand-alone problem-
solving unit. Additionally, sets of planning cells can be ag-
gregated into larger cells, which are in turn controlled by
a meta planning-cell manager. Different schemes are ap-
propriate for different applications. We have implemented
a scheme where the meta planning-cell manager accepts
planning requests from human or software agents, parcels
out the requests to a prespecified set of planning cells (two
in our demonstration), and gathers solutions for the request-
ing agent, thus generating multiple plans in parallel.

Here, we describe implementations of both a baselevel
cell manager (the PCM), and our meta planning-cell man-
ager (the Meta-PCM). Their designs serve as templates for
additional types of planning cell managers. In the long
term, MPA will contain a library of such templates which
users can adapt as appropriate for their applications.

Both the Meta-PCM and the PCM are implemented as
PRS agents. PRS provides several capabilities that make
it suitable for constructing such managers. Because cell
managers direct the activities of multiple agents, they must
be capable of smoothly interleaving responses to external
requests with internal goal-driven activities. The uniform
processing of goal- and event-directed behavior within PRS
is ideal for supporting such behavior. PRS supports paral-
lel processing within an agent, thus enabling multiple lines
of activity to be pursued at any given time. The Act lan-
guage, used to represent procedural knowledge within PRS,
provides a rich set of goal modalities for encoding activ-
ity, including notions of achievement, maintenance, testing,
conclusion, and waiting. Finally, the extensive textual and
graphical tracing in PRS provides valuable runtime insights
into the operation of cell managers. A user can interact di-
rectly with either the PCM or Meta-PCM through the PRS



Plan Performative Comm. Performative
:annotation Tell
:advice
:solve Evaluate

Figure 3: Performatives for the PCM

PCD Role Agent Names
:manager PCM
:plan-server Act-Plan-Server
:planner SIPE-2
:search-manager
:critic-manager
:scheduler OPIS
:temporal-reasoner OPIS, Tachyon
:requestor Meta-PCM, User

Figure 4: Plan Cell Descriptor Roles and Possible Fillers

interface by posting appropriate goals, and adding or re-
tracting information from the agent’s database.

Overview of the PCM
Planning requests to a single planning cell are serviced
sequentially rather than concurrently; thus, the PCM can
solve multiple tasks but only one at a time. If the PCM re-
ceives a request to generate a plan while servicing an earlier
request, it returns a message indicating that it is busy.

The combinations of communication and plan performa-
tives currently handled by the PCM are shown in Figure 3.
Annotation messages advise the PCM of annotations that
have been posted in the plan server. Such messages are
sent by triggers posted by the PCM itself. Solve messages
request the PCM to generate a plan. Advice messages pro-
vide problem-solving advice (Myers 1996) to be used by
plan generation agents within the cell; the PCM will pass
along specified advice to those agents when making plan-
ning requests.

The roles in a PCM planning cell and their possible agent
fillers are listed in Figure 4. Each role is filled by zero, one,
or a set of agents, depending on the nature of the problem-
solving process. Within the current PCM, the :scheduler
and :temporal-reasoner roles are optional.

The PCM supports a small number of planning styles,
all of which assume a level-by-level plan generation model,
derived from the hierarchical task network (HTN) approach
to planning. For each level, a more refined plan is first
generated, then critiqued. If critic roles are left unfilled,
critiquing is skipped. This model, while not applicable to
all planners, is reasonably general. In particular, nothing
is assumed about the definition of a level, thus enabling a
range of level-refinement methods (for example, expansion
of a single goal, or all goals). In addition to HTN plan-
ners, causal-link planners fit naturally into this scheme,
with goal selection, operator selection, and subgoal gen-
eration viewed as forms of plan expansion, and causal link

Plan Performative Comm. Performative
:solution Tell
:failed
:multiple-solve Evaluate
:new-agent

Figure 5: Performatives for the Meta-PCM

protection and checking constraint consistency as forms of
plan critiquing.

The PCM planning styles vary in their choice of agent to
perform the plan refinement, the selection of critic agents
for the critique phase, and the frequency of critic invoca-
tion. The PCM takes different actions based on the infor-
mation returned by the planner about the status of the ex-
pansion process. The following values can be returned:

:final-plan The returned action network is a complete and
validated solution. Receipt of such a response terminates
the PCM planning operations for the current task.

:plan-complete The returned action network is a com-
pleted plan that needs to be verified by the critics.

:level-complete The returned action network is a success-
ful refinement of the previous level’s action network. The
PCM continues with this new level.

:no-expansion No expansion was found for this level. The
PCM initiates backtracking by setting expansion param-
eters and then reinvoking the planner.

:plan-failure No plan was found and no backtracking is
possible. The PCM abandons the task.

Overview of the Meta-PCM
The Meta-PCM accepts planning request messages from
humans or other agents, each of which can request multiple
solutions to a given task. For each request, the Meta-PCM
locates an appropriate number of available planning cells
and sends messages to the manager of each cell requesting
a solution. The messages include the task to be solved, and
advice for how to solve the task. The Meta-PCM may dis-
tribute only a subset of the received requests when planning
cells are busy.

The Meta-PCM responds to a variety of messages from
planning cells that describe a solution or a failure for a plan-
ning request. Results are then forwarded to the requestor of
the planning task by sending a message. The Meta-PCM
also notices when all requests from a given incoming mes-
sage have been serviced, and produces a summary.

The combinations of communication and plan performa-
tives in the messages handled by the Meta-PCM are shown
in Figure 5. Multiple-solve messages are the incoming
planning requests. Solution and Failed messages report re-
sults from planning cells. A New-agent message declares
the availability of a new planning cell.



Integrating Planning and Scheduling
The previous sections described agents that were created
specifically for MPA: the Meta-PCM, the PCM, and the Act
Plan Server. Here we describe the modularization of legacy
software systems into MPA agents. In particular, we de-
scribe the use of an existing planner (SIPE–2 (Wilkins et
al. 1995)) and an existing scheduler (OPIS (Smith, Lassila,
& Becker 1996)) within MPA. (The integration of planning
and scheduling within MPA has been a collaboration with
Dr. Steve Smith of Carnegie Mellon University.)

One shortcoming of the planner in our domain is its in-
ability to perform a capacity analysis early in the planning
process. For example, when there are 75 airplanes and the
plan requires 83, the “capacity” of airplanes is inadequate.
Part of the MPA decomposition of OPIS includes an MPA
agent for capacity analysis.

Planner Agents
The specification for the planner agent assumes a level-by-
level plan generation process with a critique of the plan af-
ter each expansion, as described above. The planner can
expand the plan at each level to some arbitrary extent, as
defined by its algorithms. The critique can post annotations
to the plan server, resulting in failure for the planning pro-
cess if unresolvable conflicts are found. Plan expansion is
accomplished by the Search Manager agent, while the cri-
tique is accomplished by the Critic Manager agent.

The Search Manager handles a range of role-specific
messages. The primary plan performatives for Evaluate
messages are :expand-plan and :expand-plan-and-critique.
The former causes the plan to be expanded to the next level,
while the latter additionally calls the declared cell critics
on the plan. Other Evaluate plan performatives include re-
quests for initializing a problem (by translating the prob-
lem into the planner’s internal representation), displaying a
plan, and resetting various context information (to recover
from aborted planning processes). The Search Manager
also accepts a Tell message with the Advice plan perfor-
mative, which can be used to provide advice to guide the
planner in its search for solutions.

The role-specific messages for the Critic Manager all em-
ploy the communication performative Evaluate. Several
plan performatives are supported, corresponding to differ-
ent kinds of critiques to be performed. Plan-ok? causes
the planner to apply all critics known to it; Schedule-ok?
causes the agent to invoke the scheduler agent of the plan-
ning cell; Temporal-ok? causes the agent to invoke the
temporal-reasoner agent of the planning cell.

The SIPE–2 planning system (Wilkinset al. 1995) and
the Advisable Planner (Myers 1996) have been used as the
basis for planner agents within all MPA applications to date.
SIPE–2 has a precise notion of a planning level, and plan
critics that fit naturally into the above scheme. To serve
as an MPA planner agent, it had to be modularized, sepa-
rating out its search control algorithm into the Search Man-
ager agent, its plan critics algorithm into the Critic Manager
agent, and its temporal reasoning critic into the Temporal

Critic agent, which was extended to use any temporal rea-
soner in the planning cell. In addition, a new critic was cre-
ated using the scheduler agent to do capacity analysis and
resource allocation. The Schedule Critic agent was written
to interact with whatever scheduler agent is in the planning
cell.

Scheduler Agent
The use of the scheduler in our current implementation is
tied closely to the ACP domain. This domain has been
modeled within OPIS to produce a scheduling agent for the
planning cell. This agent currently provides two types of
service to support the planning process:

� Capacity analysis - profiles the resource demand over
time, and identifies periods where available assets are
oversubscribed.

� Resource allocation - commits assets to specific activi-
ties, precluding their use on other activities.

The main invocation of the scheduler is through an
:allocate-resources plan performative (with an Evaluate
communication performative), which causes the scheduler
to analyze capacity and allocate resources. This process
involves the scheduler retrieving the :resource-constraints
view of the current plan from the plan server, performing
its analysis, and posting annotations in the plan server about
capacity overruns and resource allocations for use by other
agents.

MPA Configurations
We use the termconfigurationto refer to a particular or-
ganization of MPA agents and problem-solving strategies.
Here, we describe two MPA configurations: a single-cell
configuration for generating individual solutions to a plan-
ning task, and a multiple-cell configuration for generating
alternative solutions in parallel. The use of these configu-
rations for performing planning/scheduling in an Air Cam-
paign Planning domain is also described.

Single-Cell Configuration
The single-cell configuration, illustrated in Figure 6, in-
cludes multiple planner and scheduler agents, together with
a temporal reasoning agent, in addition to the Plan Server
and PCM agents. The temporal reasoner role can be filled
by either an OPIS-based agent or a Tachyon-based agent
(Arthur & Stillman 1992). The Tachyon agent is written
in C; all other agents are written in LISP. The agents run
on different machines, both locally and over the Internet.
Within this configuration, the agents cooperatively gener-
ate a plan with the cell manager dynamically reconfiguring
the planning cell during planning.

All agents send messages to and from the plan server.
The plan server supports annotations and triggers that are
used to record features of the plan and notify agents of the
posting of those features. The plan is written to the plan
server in the Act formalism, which can be understood by
the scheduler and the planner. The Search Manager is based
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Figure 6: MPA Single Cell Configuration. Arrows represent message flow; because all agents communicate with the plan
server, those arrows are omitted. Lines without arrowheads show planning cell composition.

on SIPE–2’s interactive search routine, which has been ex-
tended and modified to record its backtracking points and
other information in the plan server. Another extension per-
mits starting the search at various backtracking points.

The configuration generates a two-day plan to achieve
air superiority over two specified countries. The PCM gen-
erates a plan to the target level, using a planning cell in-
cluding Tachyon as the temporal reasoner but no scheduler.
During planning of support missions, the PCM reconfigures
the planning cell to include the scheduler and to exclude
the temporal reasoner (the temporal constraints are not im-
pacted by the support missions).

The scheduler is then called periodically to check the re-
source allocations. Depending on the PCM planning style,
the period can be once per node, once per level, or once
per plan. The Scheduler can recommend new resource
assignments, which causes the Schedule Critic to modify
the plan. OPIS posts annotations declaring which resources
are overutilized or near capacity. If resource constraints are
sufficiently unsatisfiable, OPIS reports a schedule failure.

The configuration develops a plan in which fuel tankers
are overutilized. The PCM has posted a trigger on such
an annotation and is immediately notified. It responds by
sending an :advice plan performative to the planner, which
causes the planner to choose options requiring less fuel for
the remainder of the plan expansion. The plan will still
have flaws because resources were already overutilized be-
fore the PCM issued the advice. Therefore, the PCM also
invokes a second search for another plan, this time using
fuel advice from the start. This produces a fuel-economic
plan in which tankers are not overutilized.

Multiple-Cell Configuration
The multiple-cell configuration (see Figure 7) includes mul-
tiple instances of the single-cell configuration coordinated
by the Meta-PCM. The planning cells share common plan
server, temporal reasoner, and scheduler agents, to reduce
the number of running jobs, but multiple instances of the
shared agents can also be chosen.

The Meta-PCM controls the entire process, including ini-
tialization of planning cells, distribution of tasks and ad-
vice, and reporting of solutions. The planning cells operate
exactly as described for the single planning-cell configura-
tion, except that they are invoked by the Meta-PCM instead
of the user, and they refuse requests if they are already busy.

The multiple planning-cell configuration can be used to
produce alternative plans for the same task in parallel. Dif-
ferent advice can be provided with each plan generation re-
quest, thus resulting in plans that differ in significant char-
acteristics. As such, the multiple-cell configuration pro-
vides the means to rapidly explore varying portions of the
overall set of candidate plans.

Additional extensions include the integration of agents
for plan evaluation, user interaction, and plan visualization.
The ARPI Plan Authoring Tool (APAT) from ISX, a legacy
system written in Java, fills the role of user interface and
advice manager (depicted in Figure 6) and plan visualiza-
tion (a service also provided by the VISAGE system from
MAYA). The Air Campaign Simulator (ACS) (Cohen, An-
derson, & Westbrook 1996) from the University of Mas-
sachusetts, written in LISP, provides Monte Carlo simula-
tions of plans. The VISAGE system provides plan visual-
ization for simulation outputs. Both of these agents read
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Figure 7: MPA Configuration for Multiple Planning Cells.

Acts from the Act Plan Server and translate them to their
internal representations.

Evaluation
One critical evaluation issue for MPA is determining
whether the overhead derived from its agent-based organi-
zation and interagent message-passing outweighs the bene-
fits of the framework. To measure the overhead, we timed
the generation of ACP plans for two cases. The first case
involved using a planner (SIPE–2) in isolation; the second
case employed an MPA planning cell with a cell manager,
a plan server, and a planner, each running on a separate ma-
chine. Sun Ultras were used in all cases.2

The results are shown in Figure 8. The two columns dis-
play timings for two ways of communicating the plan to the
plan server. Times under the File column refer to writing
the plan to a file and (in the MPA case) sending the name
of the file to the plan server. Times under the Direct col-
umn refer to translating the plan to plain-text Acts and (in
the MPA case) sending these Acts to the plan server. File
communication has the advantage of limiting the size of in-
teragent messages, but works only when the plan server and
planner share a common file system. For Plan 1, the PCM
sends about 50 messages (mostly to the planner) and the
plan server receives about 60 messages (mostly from the
planner).

Using file communication, MPA has minimal overhead
for both plans. This overhead derives primarily from the

2All product and company names mentioned in this document
are the trademarks of their respective holders.

File Direct
Plan 1 (4282 nodes, 363K)

Planner Only 3.1 3.6
MPA 3.3 6.0

Plan 2 (6437 nodes, 554K)
Planner Only 8.5 9.0
MPA 8.8 38.4

Figure 8: Elapsed Times for Plan Generation (minutes).
The number of nodes listed foreach plan encompasses ac-
tion/goal and control nodes for all 15 levels ofeach plan.
Following the number of nodes is the total amount of disk
space required for storing textual representations of all lev-
els of each plan.

search control process interpretively executing Acts in the
PCM, as opposed to using compiled code in the planner.
Using direct communication, however, planning time in-
creases by two-thirds for Plan 1 and quadruples for Plan 2
(where over half a megabyte of data is sent). MPA has not
been optimized for direct communication of large amounts
of data (known improvements exist).

A primary goal of MPA was to make it easy to integrate
new technologies. As evidence of success, researchers from
the University of Massachusetts required only one day to in-
stantiate ACS as a functional MPA agent capable of sending
and receiving messages. (A few more days were required to
build a translator from Act to the internal ACS representa-
tion for plans). Our integration experience prior to MPA



was that such an effort would have taken several weeks
to a few months, as specific interfaces would be designed
to bridge differences in representation, programming lan-
guage, and communication mechanisms.

Limitations and Future Work
Generality was a key objective in designing the architec-
ture and communication protocols for MPA. However, the
design was necessarily influenced by the specifics of the
technologies and applications that were considered. We in-
tend to continue to expand the breadth and generality of the
system, through consideration of both additional technolo-
gies for the categories of agents already in the system, as
well as new categories (such as execution agents).

Additional directions for extending this work are numer-
ous. SRI has begun work on mechanisms for coordinating
subplans generated by distributed planning agents (Wolver-
ton & desJardins 1998). Other directions include exper-
imenting with additional configurations and cooperative
problem-solving methods, automatically composing plan-
ning cells based on capabilities models, defining a broader
range of cell manager control strategies and planning styles,
and extending the plan server’s shared plan representation.

Summary
MPA is an open planning architecture that facilitates incor-
poration of new technologies and allows the planning sys-
tem to capitalize on the benefits of distributed computing
for efficiency and robustness. MPA provides protocols to
support the sharing of knowledge and capabilities among
agents involved in cooperative problem-solving. These pro-
tocols support generation of multiple plans in parallel.

There is a tradeoff between overhead from MPA and the
flexibility it provides. Our evaluation shows the overhead is
insignificant in many cases. Our experience indicates that
MPA does facilitate the integration of new technologies,
thus encouraging experimentation with new technologies,
as well as the use of smaller, more modular software com-
ponents. MPA also facilitates the integration of legacy sys-
tems, including systems written in different programming
languages. Little tuning of legacy systems is required.

These advantages are shown by our use of MPA to in-
tegrate several sophisticated stand-alone systems cooperat-
ing on a large-scale problem. Separate software systems
(OPIS, Tachyon, ACS, APAT, the Advisable Planner, and
SIPE–2, using KQML, the Act-Editor, and PRSfor support)
cooperatively generate and evaluate plans, generating mul-
tiple, alternative plans in parallel. These systems have been
combined in multiple ways through the flexible architec-
ture. The integrated problem-solving framework generated
and evaluated complex plans (containing more than 4000
nodes) in the ACP domain, and included agents written in
C, C++, LISP, and Java.

The Act Plan Server allows flexible communication of
the plan among agents through the use of annotations, trig-
gers, and views. The PCM encodes different strategies for
controlling the planning process, demonstrating dynamic

strategy adaptation in response to partial results. The plan-
ner and scheduler use legacy systems to provide a new in-
tegration of planning and scheduling, including the use of
advice as a means for the scheduler to influence the planner.
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